Нестандартные методы решения задач по математике
Таким образом, получено ложное неравенство, которое доказывает справедливость исходного неравенства .
8. Методы, основанные на использовании ограниченности функций
Одним из эффективных методов решения уравнений или неравенств является метод, основанный на использовании ограниченности функций. К наиболее известным ограниченным функциям относятся, например, неко
торые тригонометрические функции; обратные тригонометрические функции; функции, содержащие модуль, степень, корень с четной степенью и т.д.
Приведем наиболее распространенные неравенства. Известно, что
,
,
,
,
,
,
,
,
,
,
,
и многие другие. Здесь
--- натуральное число,
,
и
.
Кроме приведенных выше простейших неравенств имеются и более сложные, в частности, тригонометрические неравенства
,
и неравенства с модулями вида
.
Следует также отметить, что при решении некоторых задач, приведенных в настоящем разделе, можно эффективно применять неравенства Коши, Бернулли и Коши--Буняковского, описанные в разделе .
Задачи и решения
Пример 49 Решить уравнение
Решение. Выделим полный квадрат в правой части уравнения, т.е.
. Отсюда следует, что
. Так как при этом
, то из получаем систему уравнений
Решением второго уравнения системы является
. Подстановкой в первое уравнение убеждаемся, что найденное значение
является решением системы уравнений и уравнения .
Ответ:
.
Пример 50 Решить уравнение
Решение. Обозначим
, тогда из определения обратной тригонометрической функции
имеем
и
.
Так как
, то из уравнения следует неравенство
, т.е.
. Поскольку
и
, то
и
. Однако
и поэтому
.
Если
и
, то
. Так как ранее было установлено, что
, то
.
Ответ:
,
.
Пример 51 Решить уравнение
Решение. Областью допустимых значений уравнения являются
.
Первоначально покажем, что функция
при любых
может принимать только положительные значения.
Представим функцию
следующим образом:
.
Поскольку
, то имеет место
, т.е.
.
Следовательно, для доказательства неравенства
, необходимо показать, что
. С этой целью возведем в куб обе части данного неравенства, тогда
Полученное численное неравенство свидетельствует о том, что
. Если при этом еще учесть, что
, то левая часть уравнения неотрицательна.
Рассмотрим теперь правую часть уравнения .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах
