Нестандартные методы решения задач по математике

Поскольку в прямоугольном параллелепипеде (теорема Пифагора), то . Отсюда следует справедливость неравенства . Заметим, что равенство в достигается тогда и только тогда, когда прямоугольный параллелепипед является кубом.

Пример 19 Пу

сть --- точка, лежащая внутри прямоугольника , и --- его площадь. Доказать, что

Доказательство. Через точку , лежащую внутри прямоугольника , проведем и . Обозначим , , и . Тогда , , , , и требуемое неравенство принимает вид

Используя неравенство Коши--Буняковского , можно записать два неравенства

и

Следовательно, имеет место

и

Складывая приведенные выше неравенства, получаем неравенство .

4. Методы, основанные на монотонности функций

При решении уравнений типа в ряде случаев весьма эффективным является метод, который использует монотонность функций и . Если функция непрерывна и возрастает (убывает) на отрезке , а функция непрерывна и убывает (возрастает) на этом же отрезке, то уравнение на отрезке может иметь не более одного корня.

Напомним, что функция называется возрастающей (или убывающей) на отрезке , если для любых , , удовлетворяющих неравенствам , выполняется неравенство (соответственно, ). Если функция является на отрезке возрастающей или убывающей, то она называется монотонной на этом отрезке.

В этой связи при решении уравнения необходимо исследовать функции и на монотонность, и если одна из этих функций на отрезке убывает, а другая функция --- возрастает, то необходимо или попытаться подбором найти единственный корень уравнения, или показать, что такого корня не существует. Если, например, функция возстает, a убывает для и при этом , то корней уравнения среди нет. Особенно такой метод эффективен в том случае, когда обе части уравнения представляют собой весьма ``неудобные'' для совместного исследования функции. Кроме того, если функция является монотонной на отрезке и уравнение (где --- некоторая константа) имеет на этом отрезке корень, то этот корень единственный.

Задачи и решения

Пример 20 Решить уравнение

Решение. Областью допустимых значений уравнения являются . Рассмотрим функции и . Известно, что функция для является убывающей, а функция --- возрастающей. В этой связи уравнение может иметь только один корень, т.е. , который легко находится подбором.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы