Нестандартные методы решения задач по математике
Полученные корни тригонометрических уравнений позволяют находить корни исходных уравнений как в тригонометрической, так и в алгебраической форме. Следует особо отметить, что тригонометрические уравнения имеют, как правило, бесконечное число корней, а исходные уравнения --- конечное их число.
Задачи и решения
Пример 8 Решить уравнение
ht=21 src="images/referats/655/image116.gif">
Решение. Поскольку
не является корнем уравнения , то разделим обе его части на
. Тогда
Если
или
, то левая часть уравнения будет больше
, а правая его часть --- меньше
. Следовательно, корни уравнения находятся на отрезке
.
Пусть
, где
. Тогда уравнение принимает вид тригонометрического уравнения
Решением уравнения
являются
, где
--- целое число. Однако
, поэтому
,
и
. Так как
, то
,
и
.
Ответ:
,
и
.
Пример 9 Решить уравнение
Решение. Нетрудно видеть, что
Выполним замену
, где
. В таком случае левая часть уравнения принимает вид
а из уравнения следует тригонометрическое уравнение вида
Сделаем еще одну замену переменных, пусть
, тогда
и из получаем квадратное уравнение относительно переменной
, т.е.
, решением которого являются
и
. Так как
и
, то
и
. С учетом того, что
, получаем систему тригонометрических уравнений
Из уравнений системы составим квадратное уравнение относительно
вида
и получаем
и
. Так как
, то
и
Ответ:
,
.
Пример 10 Решить систему уравнений
Решение. Поскольку
и
, то положим
и
, тогда
и
. Тогда
и
. В таком случае
,
и система уравнений принимает вид
Из первого уравнения системы получаем
. Поскольку
, то
, Следовательно, получаем систему
Отсюда следует
и
. Так как
и
, то
и
.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах
