Локальные формации с метаабелевыми группами
Содержание
Введение
1 Формация. Произведение формаций
2 Операции на классах групп
3 Экраны
3.1 Экраны формации
3.2 Формация с однородным экраном
4 Локальная формация
5 Построение локальных формаций
6 Локальные формации с заданными свойствами
Заключение
Литература
Введение
Формации, т.е. классы групп, замкнутые относительно факт
ор-групп и подпрямых произведений, всегда находились в поле деятельности исследователей по теории конечных групп. Однако вплоть до 1963 г. формационное развитие теории конечных групп шло лишь по пути накопления фактов, относящихся к различным конкретным формациям, из которых наиболее популярными были формация разрешимых групп и ее подформации, составленные из абелевых, нильпотентных и сверхразрешимых групп.
В курсовой работе рассматривается произведение формаций, операции на классах групп, приводящие к формациям. Рассматриваются локальные формации и экраны. Рассматриваются простейшие свойства локальной формации всех групп с нильпотентным компонентом.
Формация. Произведение формаций
Определение 1.1 Классом групп называют всякое множество групп, содержащее вместе с каждой своей группой и все группы, изоморфные .
Если группа (подгруппа) принадлежат классу , то она называется -группой (-подгруппой).
Определение 1.2. Класс групп называется формацией, если выполняются следующие условия:
1) каждая фактор-группа любой группы из также принадлежит ;
2) из всегда следует .
Если формации и таковы, что , то называется подформацией формации .
По определению, пустое множество является формацией (пустая формация). Множество всех групп является, конечно, формацией. Единичная формация – это непустой класс групп, состоящий лишь из единичных групп. Формациями являются: класс всех -групп, класс всех абелевых групп, класс всех нильпотентных групп, класс всех -групп ( – фиксированное простое число), класс всех нильпотентных -групп, класс всех разрешимых групп, класс всех разрешимых -групп. Мы привели пока лишь примеры тех формаций, за которыми закреплены соответствующие обозначения.
Лемма 1.1. Справедливы следующие утверждения:
1) пересечение любого множества формаций также является формацией;
2) если – некоторое множество формаций, линейно упорядоченное относительно включения , то объединение является формацией.
Доказательство осуществляется проверкой.
Определение 1.3. Пусть – непустая формация. Обозначим через и назавем - корадикалом группы пересечение всех тех нормальных подгрупп из , для которых .
Очевидно, -корадикал любой группы является характеристической подгруппой. -корадикал группы обозначают иначе через и называют -корадикалом. -корадикал будем называть нильпотентным радикалом; понятны также термины разрешимый корадикал, -разрешимый корадикал, - сверхразрешимый корадикал и т.д. -корадикал (или абелев корадикал) – это коммутант группы. Так же как и коммутант, -корадикал сохраняется при гомоморфизмах.
Лемма 1.2. Пусть – непустая формация, . Тогда справедливы следующие утверждения:
1)
2) если то
3) если и , то
Доказательство. Пусть . Тогда
Отсюда следует, что . С другой стороны,
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах