Локальные формации с метаабелевыми группами

Содержание

Введение

1 Формация. Произведение формаций

2 Операции на классах групп

3 Экраны

3.1 Экраны формации

3.2 Формация с однородным экраном

4 Локальная формация

5 Построение локальных формаций

6 Локальные формации с заданными свойствами

Заключение

Литература

Введение

Формации, т.е. классы групп, замкнутые относительно факт

ор-групп и подпрямых произведений, всегда находились в поле деятельности исследователей по теории конечных групп. Однако вплоть до 1963 г. формационное развитие теории конечных групп шло лишь по пути накопления фактов, относящихся к различным конкретным формациям, из которых наиболее популярными были формация разрешимых групп и ее подформации, составленные из абелевых, нильпотентных и сверхразрешимых групп.

В курсовой работе рассматривается произведение формаций, операции на классах групп, приводящие к формациям. Рассматриваются локальные формации и экраны. Рассматриваются простейшие свойства локальной формации всех групп с нильпотентным компонентом.

Формация. Произведение формаций

Определение 1.1 Классом групп называют всякое множество групп, содержащее вместе с каждой своей группой и все группы, изоморфные .

Если группа (подгруппа) принадлежат классу , то она называется -группой (-подгруппой). AAAAAAAAAAAAAAAAAAAAAAAAAAA

Определение 1.2. Класс групп называется формацией, если выполняются следующие условия:

1) каждая фактор-группа любой группы из также принадлежит ;

2) из всегда следует .

Если формации и таковы, что , то называется подформацией формации .

По определению, пустое множество является формацией (пустая формация). Множество всех групп является, конечно, формацией. Единичная формация – это непустой класс групп, состоящий лишь из единичных групп. Формациями являются: класс всех -групп, класс всех абелевых групп, класс всех нильпотентных групп, класс всех -групп ( – фиксированное простое число), класс всех нильпотентных -групп, класс всех разрешимых групп, класс всех разрешимых -групп. Мы привели пока лишь примеры тех формаций, за которыми закреплены соответствующие обозначения.

Лемма 1.1. Справедливы следующие утверждения:

1) пересечение любого множества формаций также является формацией;

2) если – некоторое множество формаций, линейно упорядоченное относительно включения , то объединение является формацией.

Доказательство осуществляется проверкой.

Определение 1.3. Пусть – непустая формация. Обозначим через и назавем - корадикалом группы пересечение всех тех нормальных подгрупп из , для которых .

Очевидно, -корадикал любой группы является характеристической подгруппой. -корадикал группы обозначают иначе через и называют -корадикалом. -корадикал будем называть нильпотентным радикалом; понятны также термины разрешимый корадикал, -разрешимый корадикал, - сверхразрешимый корадикал и т.д. -корадикал (или абелев корадикал) – это коммутант группы. Так же как и коммутант, -корадикал сохраняется при гомоморфизмах.

Лемма 1.2. Пусть – непустая формация, . Тогда справедливы следующие утверждения:

1)

2) если то

3) если и , то

Доказательство. Пусть . Тогда

Отсюда следует, что . С другой стороны,

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2020 - www.refsru.com - рефераты, курсовые и дипломные работы