Локальные формации с метаабелевыми группами

откуда получаем . Из и следует равенство . Утверждение 1) доказано.

Пусть – ес

тественный гомоморфизм группы на Очевидно,

откуда следует равенство . В частности, если , то . Лемма доказана.

Определение 1.4. Пусть и – некоторые формации. Если , то положим Если , то обозначим через класс всех тех групп , для которых Класс называется произведением формаций и .

Из определения 1.4 следует, что произведение формаций является пустой формацией тогда и только тогда, когда по крайней мере одна из формаций является пустой. Можно определить произведение нескольких формаций как результат последовательного умножения. Если задан упорядоченный набор формаций причем произведение уже определено, то В частности, если для любого то мы приходим к понятию степени

Понятие произведения формаций представляет интерес с точки зрения построения формаций.

Теорема 1.1. Произведение любых двух формаций также является формацией.

Лемма 1.3. Пусть и – нормальные подгруппы группы . Тогда каждый главный фактор группы -изоморфен либо некоторому главному фактору группы , либо некоторому главному фактору группы

Доказательство вытекает из рассмотрения -изоморфизма

Теорема 1.2. Пусть – некоторая формация, – класс всех тех групп, все главные факторы которых принадлежат Пусть – объединение формаций Тогда – подформация формации

Доказательство. Из леммы 1.3 выводим, что – формация. Из теоремы 1.1 и леммы 1.1 вытекает, что класс является формацией. Если – минимальная нормальная подгруппа группы , то по индукции для некоторого натурального . Но тогда либо , либо -корадикал группы . Так как , то отсюда вытекает, что , и теорема доказана.

Операции на классах групп

Определение 2.1. Всякое отображение множества всех классов групп в себя называется операцией на классах групп.

Операции мы будем обозначать, как правило, прямыми большими латинскими буквами. Результат операции , примененной к классу обозначается через Степень операции определяется так: Произведение операций определяется равенствами:

Введем операции следующим образом:

тогда и только тогда, когда вкладывается в качестве подгруппы в некоторую -группу;

тогда и только тогда, когда вкладывается в качестве нормальной подгруппы в некоторую -группу;

тогда и только тогда, когда является гомоморфным образом некоторой -группы;

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы