Локальные формации с метаабелевыми группами

Случай 2. Пусть . Тогда входит в и является -группой. Так как , то height=21 src="images/referats/632/image356.gif">абелева. Пусть – максимальная подгруппа группы , не содержащая . Тогда , , , . Отсюда, ввиду единственности , заключаем, что , a значит, . По лемме 3.10 является -группой. Но тогда и является -группой, причем . Мы получаем, таким образом, что для любого . Но тогда , так как слабо -замкнута. Последнее означает, что -центральна в , что противоречит равенству . Снова получили противоречие. AAAAAAAAAAAAAAAAAAAAAAAAAAA

Теорема доказана.

Следствие 4 Пусть группа имеет две нормальные -сверхразрешимые подгруппы, индексы которых взаимно просты. Тогда -сверхразрешима.

Для того чтобы получить это следствие, достаточно заметить, что построенный экран удовлетворяет условию теоремы при .

Следствие 5 Пусть группа имеет две нормальные сверхразрешимые подгруппы, индексы которых взаимно просты. Тогда сверхразрешима.

Теорема Слепова 6 Пусть формация имеет такой локальный экран , что для любого простого формация либо совпадает с , либо входит в и является -замкнутой. Тогда -замкнута.

Доказательство. Повторяем с очевидными изменениями доказательство теоремы .

Теорема Слепова 7 Пусть – максимальный внутренний локальный экран формации . Формация -замкнута (слабо -замкнута, ) тогда и только тогда, когда для любого простого формация -замкнута (соответственно слабо -замкнута).

Доказательство. Достаточность вытекает из теорем и . Пусть -замкнута (слабо -замкнута, ). Пусть , где – нормальные -подгруппы (нормальные -подгруппы с попарно взаимно простыми индексами). Так как , то . Покажем, что .

Пусть , где , – элементарная абелева -группа. По лемме 3.11 для любого . Так как -замкнута (слабо -замкнута), то отсюда вытекает, что . Если – пересечение централизаторов в всех -главных факторов группы , то

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2020 - www.refsru.com - рефераты, курсовые и дипломные работы