Степенные ряды

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

Содержание

1. Определение степенного ряда. Теорема Абеля

2. Свойства степенных рядов

3. Ряды Тейлора, Маклорена для функций

4. Разложение некоторых элементарных функций в ряд Маклорена

5. Приложения степенных рядов

1. Определение степенного ряда. Теорема Абеля

Степенные ряды являются частным случаем функциональных рядов.

Определение 1.1. <

b>Степенным рядом называется функциональный ряд вида .(1.1)

Здесь – постоянные вещественные числа, называемые коэффициентами степенного ряда; а – некоторое постоянное число, х – переменная, принимающая значения из множества действительных чисел.

При степенной ряд (1.1) принимает вид

. (1.2)

Степенной ряд (1.1) называют рядом по степеням разности , ряд (1.2) – рядом по степеням х.

Если переменной х придать какое-либо значение, то степенной ряд (1.1) (или (1.2)) превращается в числовой ряд, который может сходиться или расходиться.

Определение 1.2. Областью сходимости степенного ряда называется множество тех значений х, при которых степенной ряд сходится.

Ряд (1.1) с помощью подстановки приводится к более простому виду (1.2), поэтому вначале будем рассматривать степенные ряды вида (1.2).

Для нахождения области сходимости степенного ряда важную роль играет следующая теорема.

Теорема 1.1 (Теорема Абеля):

если степенной ряд (1.2) сходится при , то он абсолютно сходится при всех значениях х, удовлетворяющих неравенству ; если же ряд (1.2) расходится при , то он расходится при всех значениях х, удовлетворяющих неравенству .

Теорема Абеля дает ясное представление о структуре области сходимости степенного ряда.

Теорема 1.2:

область сходимости степенного ряда (1.2) совпадает с одним из следующих интервалов:

1) ; 2) ; 3) ; 4) ,

где R – некоторое неотрицательное действительное число или .

Число R называется радиусом сходимости, интервал интервалом сходимости степенного ряда (1.2).

Если , то интервал сходимости представляет собой всю числовую ось .

Если , то интервал сходимости вырождается в точку .

Замечание: если – интервал сходимости для степенного ряда (1.2), то – интервал сходимости для степенного ряда (1.1).

Из теоремы 1.2 следует, что для практического нахождения области сходимости степенного ряда (1.2) достаточно найти его радиус сходимости R и выяснить вопрос о сходимости этого ряда на концах интервала сходимости , т. е. при и .

Радиус сходимости R степенного ряда можно найти по одной из следующих формул:

формула Даламбера:

;(1.3)

формула Коши:

.(1.4)

Если в формуле Коши , то полагают , если , то полагают .

Пример 1.1. Найти радиус сходимости, интервал сходимости и область сходимости степенного ряда .

Решение

Найдем радиус сходимости данного ряда по формуле

В нашем случае

, .

Тогда .

Следовательно, интервал сходимости данного ряда имеет вид .

Исследуем сходимость ряда на концах интервала сходимости.

При степенной ряд превращается в числовой ряд

.

который расходится как гармонический ряд.

При степенной ряд превращается в числовой ряд

.

Это – знакочередующийся ряд, члены которого убывают по абсолютной величине и . Следовательно, по признаку Лейбница этот числовой ряд сходится.

Таким образом, промежуток – область сходимости данного степенного ряда.

2. Свойства степенных рядов

Степенной ряд (1.2) представляет собой функцию , определенную в интервале сходимости , т. е.

.

Приведем несколько свойств функции .

Свойство 1. Функция является непрерывной на любом отрезке , принадлежащем интервалу сходимости .

Свойство 2. Функция дифференцируема на интервале , и ее производная может быть найдена почленным дифференцированием ряда (1.2), т. е.

Страница:  1  2  3 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2021 - www.refsru.com - рефераты, курсовые и дипломные работы