Линейные и квадратичные зависимости, функция х и связанные с ними уравнения и неравенства
В этом случае уравнение
имеет два различных корня:
2)
, тогда
в силу (*), то есть
- два совпадающих корня.
3)
,
Тогда
не имеет вещественных корней, так как
Итак, доказана теорема:
Теорема 1. Пусть имеется уравнение ![]()
если
1)
, то уравнение не имеет вещественных решений.
2)
, то уравнение имеет два равных корня
3)
, то уравнение имеет два различных корня
Замечание: если
В этом случае корни удобно находить по формуле
Теорема 2. Если а > 0, то функция
монотонно убывает для
и монотонно возрастает для
Доказательство теоремы:
Пусть
(1),
где
произвольные фиксированные числа, тогда из (1) получаем
а это по (**) есть
, что требовалось доказать.
1) В этом рассуждении использовано монотонное возрастание функции
на множестве
2) Докажите, что функция
монотонно возрастает на множестве
Аналогично доказывается монотонное возрастание функции
на
Теорема 3. Если а < 0, то функция
монотонно возрастает для
и монотонно убывает для
Доказательство теоремы аналогично доказательству теоремы 2.
Следствие.
Если а > 0, то
для любого х
Если а < 0, то
для любого х
При а > 0
При а < 0
min и max достигаются при x =
.
Точка
называется вершиной параболы.
1.6 Зависимость расположения графика функций квадратного трехчлена от a, D
Определение. График квадратного трехчлена
называется параболой.
Нарисуем эскизы парабол для шести типичных и существенно различных комбинаций значений параметров a и D.
|

![]() | |||
| |||
2)
3)
4) )
5)
6)
1.7 Решение квадратных неравенств
Опираясь на иллюстрации, сформулируем следующее правило решения квадратных неравенств:
|
Неравенство |
Ответ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Нет решений (или |
|
|
x = |
|
|
|
|
|
|
|
|
|
|
|
x = |
|
|
|
|
|
Нет решений (или |
|
|
Нет решений (или |
|
|
x = |
|
|
|
|
|
|
|
|
Нет решений (или |
Другие рефераты на тему «Математика»:
- Решение военно-логистических задач по выбору оптимального маршрута для военно-транспортных средств
- Функция многих переменных
- Понятие эвристики в математике
- Проверка гипотезы о законе распределения случайной величины по критерию Пирсона
- Линейные и квадратичные зависимости, функция х и связанные с ними уравнения и неравенства
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах

