Функция многих переменных
(7.5)
где
- неизвестные функции х. Находя производную
и подставляя значение у и у’ в уравнение (7.5), получим
(7.6)
Выберем функцию
так, чтобы выражение в скобках равнялось нулю. Для этого надо решить уравнение с разделяющимися переменными.
Решая его, находим
. (7.7)
Постоянную интегрирования в выражении (7.7) не пишем, поскольку нам достаточно найти только какую-нибудь одну функцию
, которая преобразовывает в ноль выражение в скобках в уравнении (7.6).
Подставляя (7.7) в (7.6), получим
(7.8)
Подставляя (7.7) и (7.8) в (7.5), найдём общее решение уравнения (7.4):
(7.9)
Замечание. На практике помнить формулу (7.9) не обязательно: достаточно лишь помнить, что линейные дифференциальные уравнения первого порядка, а также уравнения Бернулли, решаются методом Бернулли с помощью подстановки
.
Уравнением Бернулли называется уравнение вида
где
- известные функции х,
.
2. Комплексным числом называется выражение
, (7.10)
где х, у – действительные числа, а символ i – мнимая единица, которая определяется условием
. При этом число х называется действительной частью комплексного числа z и обозначается
, а у – мнимой частью z и обозначается
(от французских слов: reel – действительный, imaginare – мнимый). Выражение (7.10) называется алгебраической формой комплексного числа.
Два комплексных числа
и
, которые отличаются только знаком мнимой части, называются сопряжёнными.
Два комплексных числа
и
считаются равными тогда и только тогда, когда равны их действительные и мнимые части:
Комплексные числа можно изображать на плоскости. Так число (7.10) изображается в прямоугольной системе координат точкой М(х;у). Такая плоскость называется комплексной плоскостью переменной z, ось Ох называется действительной, у
а ось Оу – мнимой.
При у=0 комплексное число
является одновременно
у
М(х;у)
действительным числом. Поэтому действительные числа являются ![]()
отдельным случаем комплексных, они изображаются на оси Ох.
Комплексные числа
, в которых х=0, называются чисто ![]()
мнимыми; такие числа изображаются на оси Оу.
0 х х
Полярные координаты точки М(х;у) на комплексной плоскости называются модулем и аргументом комплексного числа и обозначаются
Поскольку
, то по формуле (7.10) имеем
.
Это выражение называется тригонометрической формой комплексного числа z.
Модуль комплексного числа определяется однозначно, а аргумент – с точностью до 2
:
.
Здесь
- общее значение аргумента, а
- главное значение аргумента, которое находится на промежутке [0;
и отсчитывается от оси Ох против часовой стрелки.
Если
, то считают, что
а
- неопределён.
Арифметические действия над комплексными числами, заданными в алгебраической форме, выполняются по обычным правилам действий над двучленами с учётом того, что
. Так, если
,
, то
1)
2)
3)
4)
.
Рассмотрим действия над комплексными числами в тригонометрической форме.
Пусть
,
.
Тогда
=
Значит, при умножении комплексных чисел их модули перемножаются, а аргументы складываются. Это правило распространяется на произвольное конечное число множителей. В частности,
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах
