Функция многих переменных

.

Последняя формула называется формулой Муавра.

При делении комплексных чисел имеем

.

Рассмотрим извлечение корня из комплексного числа. Если для данного комплексного числа надо найти корень п-й степени , то по определению корня и формуле Муавра имеем

.

Отсюда

, .

Поскольку r и положительные, то , где под корнем понимают его арифметическое значение. Поэтому

.

Давая k значения 0,1,2,…, п -1, получим п разных значений корня. Для других значений k аргументы будут отличаться от найденных на число, кратное 2, поэтому значения корня будут совпадать с уже найденными.

Известно, что показательную функцию с мнимым показателем можно выразить через тригонометрические функции по формуле Эйлера . Отсюда следует, что всякое комплексное число можно записать в форме , которая называется показательной формой комплексного числа z.

3. Уравнение вида

(7.11)

где р, q – постоянные числа, называется линейным однородным дифференциальным уравнением второго порядка с постоянными коэффициентами. Для его решения сначала надо составить характеристическое уравнение

(7.12)

В зависимости от корней уравнения (7.12) общее решение уравнения (7.11) приобретает один из таких видов:

1) , если действительные и ;

2) , если действительные и ;

3) , если , ().

Пример 7.8. Решить уравнение

(7.13)

Решение. Сначала составим и решим соответствующее характеристическое уравнение:

D = 32- 4*5= -11,

Характеристическое уравнение имеет два сопряжённых корня:

.

Поэтому общее решение уравнения (7.13) будет таким:

.

Лекция 17. Тема – Ряды. Числовые ряды. Признаки сходимости. Степенные ряды.

План.

1. Основные понятия. Необходимое условие сходимости ряда.

2. Признаки сравнения. Признаки Даламбера и Коши. Признак Лейбница.

3. Степенные ряды. Теорема Абеля. Ряды Тейлора и Маклорена.

1. Пусть задана последовательность чисел:

Выражение

называется числовым рядом; числа называются членами ряда; число называется общим членом ряда.

Сумма п первых членов ряда

называется п-ой частичной суммой ряда.

Если существует конечный предел

,

то число S называют суммой ряда , а сам ряд называют сходящимся. Если же предел не существует или равен бесконечности, то говорят, что ряд расходящийся.

Рассмотрим ряд

.

Это сумма геометрической прогрессии, q – знаменатель прогрессии. Если , прогрессия называется убывающей. Сумму первых п членов этой прогрессии находят по формуле

. (8.1)

Если , то и . Значит, бесконечно убывающая геометрическая прогрессия всегда сходится. Если , то и прогрессия расходится.

Если числовой ряд сходится, то разность между его суммой S и частичной суммой называется п-м остатком ряда, то есть

= S-.

Остаток ряда является той погрешностью, которая получится, если вместо S взять . Поскольку , то, взяв достаточно много первых членов сходящегося ряда, можно сумму этого ряда вычислить с любой точностью.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы