Нестандартные задачи по математике

Дело в том, что если f - инвариант, то из f(a.) = f(p), вообще говоря, ничего не вытекает. Если f(a) отлично от f(p) то позиции а и p не эквивалентны (это следует из (1)). Если же f(a) = f(p), то позиции а и р могут быть как эквивалентными, так и не эквива­лентными: инварианту не запрещается на разных орбитах принимать одинаковые зна­чения. (Например, постоянная функция, т. е. функция, которая

на всех элементах из М принимает одно и то же значение, тоже инвариантна.)

Как же быть? Попробуйте для какого-нибудь п вида 4k перейти от позиции w, к позиции v . Почему-то не удается. Попробуем Найти другой , более тонкий инвариант.

Занумеруем секторы (скажем, по часовой стрелке) от 1 до n. Для про­извольной расстановки а.фишек по секторам обозначим через xk (а) количество фишек в k-м секторе при расстановке a.

Рассмотрим теперь такую функцию q:

q (a)= 1 x1 (a) + 2 x2 (a) +3x3(a) +

+ . + n xn(a). (2)

Является ли функция q инвариантом?

Произвольное допустимое переме­щение (рис. 5) затрагивает 4 слагае­мых суммы (2):

. + i xi (a) + (i + 1) xi+1 (a) + .+ (j - 1) xj -1(a) + j x j(a)+ … (3)

При перемещении , изображенном

. + i [xi(a) - 1] + (i + 1) [xi+1(a) + 1]+

+…+(j – 1) [xj-1(a) + 1] + j [xj (a) - 1] +…

Легко проверяется, что обе суммы равны. Итак, q - инвариант! Нет,

мы забыли, что n-й сектор граничит с первым. Значит, есть еще 3 возмож­ности. Подсчет, аналогич­ный только что сделанному, показы­вает, что в случае, изображенном на рис. 6, q (a) уменьшится на п, а в случае увеличится на п. В третьем случае q (а), конечно, не изменится. Итак, за одно переме­щение значение функции q может измениться, но только на п. Следовательно, функция r, значение которой на расстановке a равно остатку. от деления числа q (a) на п, есть ин­вариант.

Для позиции v (если все п фишек собраны в 1-м секторе)

x1(v) = x2(v) =…= xl -1(v) = xl+1(v) = …=xn (v) = 0,

xl(v) = n.

Значит, q (v) = l n и r (v) = 0 (каковы бы ни были п и l ). С другой стороны,

x1(w) = x2(w) =…= xn(w) = 1. Значит, q(w) = 1 + 2 + 3 +…+ n = (n(n+1))/2

Если n = 2m, то q(w) = nm + m и r(w) = т =/0 . Сле­довательно, при четном п получаем r(w) =/ r(v). Итак, при четном п по­зиции w и v не эквивалентны.

Если же п = 2т + 1, то q(w) = n(m + 1) и r(w) = 0. Таким образом, при нечетном п мы опять имеем: r (и) — r (v). Получается, что при нечетном п вопрос об эквива­лентности позиций wи v снова остается открытым.

Универсальный инвариант

Назовем инвариант f универсальным, если на неэквивалентных позициях он принимает различные значения: если a~/ p, то f(a) ¹f(p) . Таким образом, для универсаль­ного инварианта f: если f(a) = f(р), то a ~ р.

Универсальный инвариант на каждой орбите принимает свое значение. По­скольку для универсального инва­рианта a~pÛf(a) = f(p), универсальный инвариант для любой пары позиций позволяет установить, эквивалентны ояи или нет.

Как проверить, что некоторый ин­вариант f универсален? Общего мето­да не существует. Иногда может по­мочь следующая простая

Теорема. Если а) существуют такие l позиций б1, б2, ., бl, что каждая позиция a из М эквивалентна одной из них и b) инвариант f при­нимает, по крайней мере, l различ­ных- значений, тоf—универсальный инвариант и позиции бi, бj (i=/j) noпарно не эквивалентны.

Из а) вытекает, что существует не более l орбит. Из b) вытекает, что существует не менее l орбит. Следо­вательно, существует ровно l орбит. Снова из b) вытекает теперь, что ин­вариант f принимает ровно l значе­ний и, значит, f универсален. Нако­нец, из а) вытекает, что позиции б1, б2, ., бl принадлежат разным ор­битам и, таким образом, попарно не эквивалентны.

Задача 1 (окончание). Дока­жем, что инвариант r универсален. Обозначим через бi, такую расстанов­ку фишек: одна фишка — в i-м сек­торе, все остальные — в п-м секторе. Под бn мы будем, разумеется, пони­мать расстановку, при которой все n фишек — в n-м секторе.

Легко сообразить, что любая рас­становка эквивалентна одной из по­зиций б1, б2, . , бn. В самом деле, пусть a — произвольная расстановка фишек. Попытаемся собрать все п фишек в n-м секторе. Для этого бу­дем передвигать первую фишку, пока не загоним ее в п-ый сектор; од­новременно, в соответствии с прави­лами, мы будем перемещать вторую фишку в противоположную сторону. Затем загоним в n-й сектор вторую фишку, двигая в противоположную сторону третью фишку, и так далее — вплоть до (п— 1)-й фишки. Когда мы загоним п — 1 фишек в n-й сек­тор, п-я фишка будет в каком-то i-м секторе (i = 1, 2, . , п). Это и озна­чает, что a~ бi.

Посчитаем r(бi). При i не равном п:

x1(бi) == x2(бi) = …= x i - 1(бi) = x i+1 (бi) = .= xn-1(бi)=0,

xi(бi)=1,

xn(бi)-=n - 1.

Следовательно, q (бi) -= i l + п (п— 1) и r(бi) = i. Кроме того, q(бn) = nn и r(бn) = 0. Итак, инвариант r принимает по крайней мере п значений.

По теореме инвариант r универ­сален и позиции б1, б2, . , бn попарно не эквивалентны.

Поскольку r — универсальный инвариант, a ~ р Û r(а) = r(р).

В предыдущем параграфе мы посчи­тали, что r(w) = r(v) Û n-нечетное. Следовательно, w ~ v ,тогда и толь­ко тогда, когда п — нечетное. Зада­ча, наконец, решена полностью.

Задачи

1.19. Докажите, не используя понятия инварианта, что при не­четном п позиции w и v эквиваленты.

1.20. Проверьте, что любая функция от инварианта снова является инвариантом: если f — инвариант и g — произвольная числовая функция, то и функ­ция h : h(a) = g(f(a)) (4) тоже инвариантна.

1.21.Докажите, что любой инвариант можно представить в виде функции от любого универсального инвариан­та: если h — инвариант, a f — универсаль­ный инвариант, то существует такая число­вая функция g, что выполняется (4).

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2020 - www.refsru.com - рефераты, курсовые и дипломные работы