Нестандартные задачи по математике

Возможны следующие случаи.

1) Может получиться шестиугольник. Тогда утверждение задачи выполняется.

2) Может получиться четырехугольник и «двуугольник» ; последнее возможно тогда, когда два школьника решили одни и те же задачи.

3) Могут получиться два треугольника.

4) Могут получиться три «двуугольника».

Этим исчерпываются все возможности. В каждом из рассмотренных случаев у

тверждение задачи выполняется.

3.31. На столе в приемной парикмахерской лежат журналы. Каждый клиент парикмахерской просмотрел два журнала; каждый журнал просмотрели три человека; для каждой пары журналов имеется только один клиент, который их просмотрел. Сколько журналов и сколько клиентов в приемной парикмахерской?

Решение.

Обозначим журнал точкой, а клиента, просмотревшего этот журнал – отрезком, выходящим из этой точки.

Возьмем одну такую точку А. Так как каждый журнал просмотрели три человека, то из точки А должны выходить три отрезка. Так как каждый клиент просмотрел два журнала, то каждый

Отрезок соединят две точки. (рис. 32).

Поскольку каждую пару журналов просмотрел один человек, то нужно каждую пару точек соединить отрезком. Получаем четырехугольник с диагоналями (рис. 33). Проверьте еще сами, что здесь все три условия задачи выполняются.

Может возникнуть вопрос: а не существует ли еще хотя одна , пятая точка Е, такая, что все условия задачи выполняются? Тогда из каждой из пяти точек будет выходить не по три, а по четыре отрезка, а это противоречит условиям задачи. AAAAAAAAAAAAAAAAAAAAAAAAAAA

Ответ: 4 журнала, 6 клиентов.

3.32. В одном учреждении каждый сотрудник выписывает две газеты, каждую газету выписывает пять человек и каждую пару газет выписывает только один человек. Сколько человек в учреждении и сколько они выписывают газет.

3.33. Шесть точек, из которых никакие три не лежат на одной прямой соединены всевозможными отрезками и каждый отрезок окрашен в черный или красный цвет. Докажите, что найдется треугольник с вершинами в данных точках, у которого все стороны черные, или треугольник, у которого все стороны красные.

Решение.

Возьмем одну из шести точек А1более четырех отрезков ( по обобщенному принципу Дирихле ). Пусть отрезки А1А2, А1А3 и А1А4 – красные. Рассмотрим два случая.

1) Допустим, что среди отрезков А2А3, А2А4 и А3А4 имеется красный, например отрезок А2А3. Тогда у треугольника А1А2А3 все стороны красные. Именно этот вариант изображен на рисунке 34.

2) Если допустим, что среди отрезков А2А3, А2А4 и А3А4 нет красного, тогда все эти отрезки – черные, а следовательно у треугольника А2А3А4 все стороны черные.

3.34. Докажите, что если в задаче 3.33 вместо шести точек взять пять, треугольник с одноцветными сторонами может и не найтись.

3.35. В международном туристическом лагере шесть туристов познакомились между собой. Выяснилось, что среди любых трех из них имеются двое, которые могут разговаривать друг с другом на каком-нибудь языке. Верно ли, что среди них найдутся трое, каждый из которых может разговаривать с каждым из двух других на каком- нибудь языке?

3.36. 17 ученых из разных стран переписываются между собой на одном из трех языков: английском, французском или русском. Докажите, что среди них найдутся трое, которые переписываются между собой на одном и том же языке.

Решение.

Обозначим каждого из ученых точкой и соединим эти точки всевозможными отрезками. Точки расположим так, чтобы никакие три из них не лежали на одной прямой. Так как каждый ученый переписывается с 16 остальными, то из каждой точки выходит 16 отрезков. Каждый из отрезков, означающий переписку ученых на английском языке, окрасим в черный цвет, на французском – в красный, на русском – в белый.

Рассмотрим два случая.

1) Пусть среди отрезков, соединяющих точки А2, А3, А4, А5, А6 и А7 попарно между собой, имеется черный, скажем А2А3. Тогда у треугольника А1А2А3 все стороны черные, т. е. соответствующая тройка ученых переписываются между собой на английском языке.

2) Пусть среди этих отрезков нет черного. В этом случае отрезки между шестью точками А2, А3, А4, А5, А6 и А7 окрашены не более, чем в два цвета – красный и белый. Тогда на основании утверждения задачи 3.33 среди отрезков, соединяющих эти точки, имеются три, составляющие треугольник со сторонами одного цвета.

3.37. На плоскости даны п точек, из которых никакие три не лежат на одной прямой. Они соединены всевозможными отрезками, и каждый отрезок окрашен в один из четырех различных цветов. При каком наименьшем п обязательно найдется треугольник с одноцветными сторонами с вершинами в трех из данных точек?

3.38. Последовательность из 36 нулей и единиц начинается с пяти нулей. Среди пятерок подряд стоящих цифр встречаются все 32 возможные комбинации. Найдите пять последних цифр последовательности.

3.39. Докажите, что можно расположить по кругу символы 0 и 1 так, чтобы любой возможный набор из n символов, идущих подряд, встретился.

Указание.

Рассмотреть граф, вершины которого суть слова длины n-1. Две вершины u и v соединяются стрелкой, если существует слово длины n, у которого u является началом, а v - концом.

4. Раскраски

Говорят, что фигура покрашена в несколько цветов, если каждой точке фигуры приписан определенный цвет. Бывают задачи, где раскраска уже дана, например для шахматной доски, бывают задачи, где раскраску с данными свойствами нужно придумать, и бывают задачи, где раскраска используется как идея решения.

Задачи

4.1. Из шахматной доски вырезали две противоположные угловые клетки. Докажите, что оставшуюся фигуру нельзя разрезать на «домино» из двух клеток

Решение.

Каждая фигура «домино» содержит 1 белую и 1 черную клетку. Но в нашей фигуре 32 черных и 30 белых клеток (или наоборот).

4.2. Можно ли все клетки доски 9х9 обойти конем по одному разу и вернуться в исходную клетку?

Решение.

Каждым ходом конь меняет цвет клетки, поэтому, если существует обход, то число черных клеток равно числу белых, что неверно.

4.3. Дан куб 6х6х6. Найти максимально возможное число параллелепипедов 4х1х1 (со сторонами параллельными сторонам куба), которые можно поместить в этот куб без пересечений.

Идея решения.

Легко поместить 52 параллелепипеда внутрь куба. Докажем, что нельзя больше. Разобьем куб на 27 кубиков 2х2х2. Раскрасим их в шахматном порядке. При этом образуется 104 клетки одного цвета (белого) и 112 - другого (черного). Осталось заметить, что каждый параллелепипед содержит две черных и две белых клетки.

Ответ: 52.

4.4. Прямая раскрашена в 2 цвета. Докажите, что найдутся 3 точки А, В, С одного цвета такие, что AB = ВС.

4.5. Раскрасьте прямую в 3 цвета так, чтобы нельзя было найти трех точек А, В, С разного цвета таких, что AB = ВС.

5. Плоскость раскрашена а) в 2 цвета, б) в 3 цвета. Докажите, что найдутся 2 точки одного цвета, расстояние между которыми равно 1

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2020 - www.refsru.com - рефераты, курсовые и дипломные работы