Нестандартные задачи по математике

Решение.

Преобразуем число а, учитывая, что всего у него 2n + 1 цифр, а следовательно, первая единица – разряда 2n:

a = 101010…101 = 102n + 102n-2 + 102n-4 +…+ 102 + 1 =

= (1/(102 -1))(102 – 1)(102n + 102n-2 +…+102 +1) =

= (1/99)(102n+2-1) = (1/99)((10n+1)2 – 1) = (1/99)(10n+1+1)( 10n+1-1).

Теперь рассмотрим два случая.

1) Пусть n четно.

Тогда сумма 10n+1+1 де

лится на 11, причем частное от такого деления больше 1, так как 10n+1+1 >11; разность 10n+1-1 делится на 9, причем частное также больше 1, так как 10n+1+1 >11; разность 10n+1-1 делится на 9, причем частное также больше 1. Получилось составное число

а = ((10n+1+1)/11) ((10n+1-1)/9).

2) Пусть n нечетно.

В этом случае разность 10n+1-1 делится на 102 – 1= 99 и частное больше 1, поскольку 10n+1-1 > 99.

5.23. Докажите, что все числа вида

10001,100010001,1000100010001,…

- составные.

5.24. Докажите, что число 8(35k + 55n) – 5 при любых натуральных k и n является составным.

5.25. Какое наибольшее число простых чисел может быть среди 15 последовательных натуральных чисел, больших 2?

Решение.

Очевидно, простые числа нужно искать среди нечетных. Из 15 последовательных натуральных чисел имеется 7 или 8 нечетных. Среди любых трех последовательных натуральных чисел ровно одно делится на 3, поэтому среди 7 или 8 последовательных нечетных натуральных чисел имеется 2 или 3 числа, делящихся на 3. Если их отбросить, то останется 5 или 6 нечетных чисел.

Нужно еще убедиться, что такие 6 простых чисел возможны. Например, если взять такие 15 последовательных натуральных чисел: 3, 4, 5, 6,…, 17, то среди них – 6 простых. 3, 5, 7, 11, 13, 17.

О т в е т: 6.

5.26. Составьте из простых чисел все возможные арифметические прогрессии с разностью 6 и числом членов, большим 4.

5.27. Докажите, что все числа p, p + 2, p + 4 являются простыми только в случае, когда они образуют тройку 3, 5, 7.

Решение.

Рассмотрим несколько случаев, в зависимости от p.

При p = 2 число p +2 = 4 – составное, поэтому значение p = 2 отпадает.

При p = 3 получим тройку 3, 5, 7, о которой упоминается в условии задачи.

При p = 5 число p + 2 = 7 – простое, но число p + 4 = 9 – составное, значит, p = 5 нужно отбросить.

При p = 7 число p + 2 = 9 – составное.

При p = 11 число p + 4 = 15 – тоже составное.

Возникает предположение, что подходит только p = 3. Докажем его.

Нетрудно заметить, что значение p = 5, p = 7, p = 11 не подходили потому, что или p + 2 или p + 4 делятся на 3. Убедимся, что так будет всегда при простом p>3.

Простое число, большее 3, не делится на 3 и, следовательно, при делении на 3 может давать в остатке только 1 или 2. Рассмотрим оба случая.

1) Пусть p при делении на 3 дает в остатке 1: p = 3k + 1 (kÎN). Тогда число p + 2 = (3k + 1) + 2 = 3k = 3 делится на 3, причем частное от этого деления больше 1. Значит число p + 2 составное.

2) Пусть p = 3k + 2 (kÎN). Тогда число p + 4 = (3k + 2) + 4 = 3k + 6 – составное.

5.28. Найдите все такие p, что числа p, p + 10 и p + 20 – простые.

Задачи этого пункта – это, по существу, числовые ребусы. Своеобразие таких задач в том, что одна из двух компонент действия получается из другой путем перестановки или зачеркивания цифр.

Задачи на зачеркивание цифр в натуральном числе

5.29. Найдите все натуральные числа, которые при зачеркивании последней цифры уменьшаются в 14 раз.

Решение.

Обозначим искомое число через 10x + y, где x – количество десятков числа, y – его последняя цифра. Тогда

10x + y = 14x, y = 4x.

Так как y есть цифра, то и x – цифра, причем не превосходящая 2. Полагая x = 1, 2, находим, что соответственно y = 4, 8.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы