Нестандартные задачи по математике

Ответ: корзины расположились, начиная с №1, в последовательном порядке Д, В, А, Б, Г или в порядке Д, В, Б, А, Г.

3.2. Петр, Геннадий, Алексей и Владимир занимаются в одной детской спортивной школе в разных секциях: гимнастики, легкой атлетики, волейбола и баскетбола. Петр, Алексей и волейболист учатся в одном классе. Петр и Геннадий на тренировки ходят пешком вместе, а гимнаст ездит

на автобусе. Легкоатлет не знаком ни с волейболистом, ни с баскетболистом. Кто в какой секции занимается?

3.3.Футбольные команды пяти школ города учавствуют в розыгрыше кубка. В финал кубка выходят две команды. До соревнований пять болельщиков высказали прогнозы, что в финал выйдут команды:

1) Б и Г, 2) В и Д , 3) Б и В, 4) А и Г, 5) Г и Д.

Один прогноз оказался полностью неверным, в остальных была правильно названа только одна из команд-финалисток. Какие команды вышли в финал?

3.4. Три товарища – Владимир, Игорь и Сергей – окончили один и тот же педагогический институт и преподают математику, физику и литературу в школах Тулы, Рязани и Ярославля. Владимир работает не в Рязани, Игорь – не в Туле. Рязанец преподает не физику, Игорь – не математику, туляк преподает литературу. Какой предмет и в каком городе преподает каждый из них?

3.5. Среди офицеров А, Б, В и Г – майор, капитан и два лейтенанта. А и один из лейтенантов – танкисты, Б и капитан – артиллеристы, А младше по званию, чем В. Определите род войск и воинское звание каждого из них.

3.6. В стране Радонежии некоторые города связаны между собой авиалиниями. Из столицы выходит 1985 авиалиний, из города Дальнего одна, а из остальных городов - по 20 линий. Докажите, что из столицы можно добраться до Дальнего.

Решение.

Рассмотрим множество городов, до которых можно добраться из столицы. Это граф: его вершины - города, ребра - авиалинии, их соединяющие. Из каждой вершины графа выходит столько ребер, сколько всего авиалиний выходит из соответствующего города. Граф содержит нечетную вершину - столицу. Поскольку число нечетных вершин в графе четно, в нем есть еще одна нечетная вершина. Этой вершиной может быть только город Дальний.

Задачи, при решении которых используются вершины, стороны и диагонали многоугольника

3.7. Можно ли организовать футбольный турнир девяти команд так, чтобы каждая команда провела по четыре встречи?

Решение

Изобразим каждую команду точкой, а проведенную ею встречу – отрезком, исходящим из этой точки. Девять точек лучше расположить так, чтобы при последовательном соединении их отрезками образовался выпуклый девятиугольник.

Задача сводиться к следующей: можно ли девять точек соединить отрезками так, чтобы из каждой точки выходили четыре отрезка? Другими словами, существует ли граф с деятью вершинами, у которого степень каждой вершины равна 4?

Прежде всего проведем все стороны девятиугольника; они будут означать, что каждая команда провела две встречи.

Для того чтобы получить еще две встречи будем, например, соединять все вершины диагоналями через одну ( рис. 19 ). ( Целесообразно для всех держаться одной и той же системы проведения из них отрезков, иначе решение усложнится. ) После этого все получается.

Ответ: можно.

3.8. Можно ли провести футбольный турнир восьми команд так, чтобы каждая команда провела: а) по четыре встречи; б) по пять встреч

3.9. Можно ли провести футбольный турнир семи команд так, чтобы каждая команда провела по три встречи?

Решение.

Попытки решить эту задачу тем же методом, что и предыдущие задачи, приводят к неудаче. Возникает подозрение, что провести турнир таким образом нельзя.

Для того чтобы доказать нашу гипотезу, попробуем вместо рисунка подсчитать общее число встреч, которые надо провести командам. Оно равно 7 (3/2). Но это число не является целым.

Ответ: нельзя.

3.10. Докажите что общее число вершин графа, которые имеют нечетную степень четно.

3.11. В трех вершинах правильного пятиугольника расположили по фишке. Разрешается передвигать их по диагонали в любую свободную вершину. Можно ли таким образом добиться того, чтобы одна из фишек вернулась на свое место, а две другие поменялись местами?

3.12. Дан правильный 45-и угольник. Можно ли так расставить в его вершинах цифры от 0 до 9 так, чтобы для любой пары различных цифр нашлась сторона, концы которой занумерованы этими цифрами.

Указание.

Рассмотреть полный граф, вершины которого суть цифры от 0 до 9. Задача сводится к его обходу.

3.13. Докажите что общее число вершин графа, которые имеют нечетную степень четно.

Решение.

Обозначим число вершин графа, имеющих нечетную степень, через k, а степени таких вершин – соответственно через а1, а2,…, аk. Кроме того, у графа могут быть вершины с четной степенью; обозначим степени этих вершин соответственно через b1, b2,…, bn.

Допустим, что число k нечетно. Подсчитаем общее число ребер графа. Оно равно [(а1 + а2 +…+ аk) + (b1 + b2 +…+ bn)] /2.

Сумма в первых круглых скобках числителя полученной дроби есть число нечетное, как сумма нечетного числа нечетных слагаемых, а сумма во вторых скобках число четное. Но тогда весь числитель – число нечетное, а значит дробь не является натуральным числом. Мы пришли к противоречию.

3.14. Можно ли 15 телефонов соединить между собой так, чтобы каждый из них был связан ровно с 11 другими?

3.15. Девять школьников,разъезжаясь на каникулы, договорились, что каждый из них пошлет открытки пятерым из остальных. Может ли оказаться, что каждый из них получит открытки именно от тех друзей, которым напишет сам?

3.16. В шахматном турнире в один круг участвуют 17 шахматистов. Верно ли, что в любой момент турнира найдется шахматист, сыгравший к этому моменту четное число партий ( может быть ни одной )?

Задачи на обведение контура фигуры непрерывной линией

3.17. В 18 веке город Кенигсберг ( ныне Калининград в составе нашей страны ) был расположен на берегах реки и двух островах. Различные части города были соединены семью мостами (рис. 20). Можно ли обойти все эти мосты так, чтобы побывать на каждом из них ровно один раз?

Это и есть задача Эйлера о кенигсбергских мостах, о которой упоминалось в начале параграфа.

Решение.

Обозначим различные части города буквами А, В, С и К и изобразим их точками. Мосты изобразим линиями, соединяющими эти точки. Получим граф ( рис. 21).

Задача сводится к следующей: существует ли путь, проходящий по всем ребрам графа, причем по каждому ребру только один раз?

Рассмотрим два случая.

1) Предположим, что существует такой замкнутый путь. Тогда степень каждой вершины графа должна быть четной, так как, входя в какую-либо вершину, мы затем должны из нее выйти, причем по другому ребру. Что касается начала пути, то после выхода из него мы должны в конце концов в него и вернуться, поскольку путь замкнутый. Однако на рисунке 20 нет ни одной вершины, степень которой была бы четной. Значит этот случай невозможен.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы