Нестандартный анализ

Заработок на криптовалютах по сигналам. Больше 100% годовых!

Заработок на криптовалютах по сигналам

Трейдинг криптовалют на полном автомате по криптосигналам. Сигналы из первых рук от мощного торгового робота и команды из реальных профессиональных трейдеров с опытом трейдинга более 7 лет. Удобная система мгновенных уведомлений о новых сигналах в Телеграмм. Сопровождение сделок и индивидуальная помощь каждому. Сигналы просты для понимания как для начинающих, так и для опытных трейдеров. Акция. Посетителям нашего сайта первый месяц абсолютно бесплатно.

Обращайтесть в телеграм LegionCryptoSupport

СОДЕРЖАНИЕ

ВСТУПЛЕНИЕ……………………………………………………………………………3

1. ЛЕЙБНИЦ И “ДРЕВНЯЯ ИСТОРИЯ” НЕСТАНДАРТНОГО АНАЛИЗА ….…4

2. РОБИНСОН И «НОВАЯ ИСТОРИЯ» НЕСТАНДАРТНОГО АНАЛИЗА…… .8

3. БЕСКОНЕЧНО МАЛЫЕ ВЕЛИЧИНЫ…………………………………………….10

4. ГИПЕРДЕЙСТВИТЕЛЬНАЯ ПРЯМАЯ……………………………………………16

5. ПРИМЕР НЕАРХИМЕДОВОЙ ЧИСЛОВОЙ СИСТЕМЫ………………….…… 18

6. НОВЫЕ ТРЕБОВАНИЯ К ГИ

ПЕРДЕЙСТВИТЕЛЬНЫМ ЧИСЛАМ И ОСНОВНАЯ ГИПОТЕЗА………………………………………………………………21

7. СЛЕДСТВИЯ ОСНОВНОЙ ГИПОТЕЗЫ………………………………………….24

8. ПОСТРОЕНИЕ СИСТЕМЫ ГИПЕРДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ………………27

ЛИТЕРАТУРА……………………………………………………………………… ….33

ВСТУПЛЕНИЕ

Нестандартный анализ возник в 1960 году, когда Абрахам Робинсон, специалист по теории моделей, понял, каким образом методы математической

логики позволяют оправдать классиков математического анализа XVII и XVIII вв., поставив на строгую основу их рассуждения, использующие “бесконечно большие” и бесконечно малые величины. Таким образом, речь идет не о каких-то новых “нестандартных” методах, не имеющих ничего общего с традиционной математикой, а о развитии новых средств внутри стандартной (теоретико-множественной) математики.

Нестандартный анализ остался бы любопытным курьезом, если бы единственным его приложением было обоснование рассуждений классиков математического анализа. Он оказался полезным и при развитии новых математических теорий. Нестандартный анализ можно сравнить с мостом, переброшенным через реку. Постройка моста не расширяет доступной нам территории, но сокращает путь с одного берега на другой. Подобным образом нестандартный анализ делает доказательства многих теорем короче.

Однако, быть может, главное значение нестандартного анализа состоит в другом. Язык нестандартного анализа оказался удобным средством построения математических моделей физических явлений. Идеи и методы нестандартного анализа могут стать важной частью будущей физической картины мира. Во всяком случае уже сейчас многие специалисты по математической физике активно используют нестандартный анализ в своей работе.

Нестандартный анализ позволяет с новой точки зрения посмотреть на многие рассуждения классиков математического анализа, кажу­щиеся нестрогими, но приводящие к успеху, и путем относительно небольших уточнений сделать их удовлетво­ряющими современным критериям строгости.

1. ЛЕЙБНИЦ И “ДРЕВНЯЯ ИСТОРИЯ” НЕСТАНДАРТНОГО АНАЛИЗА

Возраст нестандартного анализа колеблется (в зави­симости от точки зрения) от двух с половиной десятков до трех сотен лет. Два с половиной десятка получится, если считать, что нестандартный анализ зародился осенью 1960 г., когда его основатель, Абрахам Робинсон, сделал доклад на одном нз семинаров Принстонского университета о возможности применения методов мате­матической логики к обоснованию математического ана­лиза. Триста лет получится, если считать началом не­стандартного анлиза появление символов бесконечно малых dx, dy трактате Лейбница “Новый метод”.

Трудно сказать с уверенностью, насколько в действи­тельности Лейбниц был близок к идеям нестандартного анализа. Как пишет сам Робинсон “исто­рия предмета обычно пишется в свете его позднейшего развития. Уже более чем полвека все обзоры истории дифференциального и интегрального исчислений основы­вались на уверенности в том, что понятие бесконечно малых и бесконечно больших, если даже и непротиворе­чиво, бесполезно для развития анализа. В результате в работах этого периода заметно различие между стро­гостью, с которой рассматриваются идеи Лейбница и его последователей, и снисходительностью, проявляемой к провозвестникам идеи предела”. Характерно, например, следующее высказывание Анри Лебега от 3 декабря 1926 г. “Бесконечно малые были когда-то туманными сущностями, встречавшимися в неясных и неточных формулировках. Все разъяснилось впоследствии благо­даря понятию предела”.

Считая, что идеи Лейбница и идеи сторонников поня­тия предельного перехода мерились двойным стандартом при несправедливом склонении весов правосудия в поль­зу предела, Робинсон предлагает во многом пересмотреть общую картину возникновения и развития математиче­ского анализа от Ньютона и Лейбница до Коши и Вейерштрасса. Этот пересмотр приводит к более полному при­знанию заслуг Лейбница, и сам Лейбниц перемещается, таким образом, из разряда гениев третьего класса в раз­ряд гениев второго класса (класси­фикация, предложенная Станиславом Лемом: в этой классификации гении третьего класса получают прижизненное, а гении более высокого класса – лишь посмертное признание).

Изложим историко-математические взгляды Робинсона. Робинсон резюмирует стандартный взгляд на историю развития математического анализа в следующих словах: “После длительного периода, в течение которого были определены площади, объемы и касательные в различных частных случаях, во второй половине семнадцатого сто­летия Ньютоном и (несколько позже, но независимо) Лейбницем была построена общая теория дифференциро­вания и интегрирования. Касаясь обоснования введенных им понятий, Ньютон обращался то к бесконечно малым, то к пределам, то непосредственно к физической интуи­ции; его непосредственные последователи предпочитали последнее. С другой стороны, Лейбниц и его последова­тели развивали теорию исходя из дифференциалов пер­вого и следующих порядков. Технические удобства обо­значений, использовавших дифференциалы, привели к бы­строму развитию Анализа и его приложений в Европе, где они были приняты. Однако внутренние противоречия этой концепции привели к осознанию того, что необходи­мы какие-то другие основания. Лагранж считал, что ему удалось найти подходящий путь, взяв за основу тейлоровское разложение функции. Но первое строгое обоснование математического анализа было дано лишь Коши. Основой теории Коши было понятие предела, которое, будучи впервые выдвинуто Ньютоном, впоследствии под­держивалось Даламбером. Более формальное изложение методов Коши было дано Вейерштрассом (которого в не­которой степени предвосхитил Больцано). После создания теория пределов использование бесконечно больших и бесконечно малых превратилось в оборот речи, применяе­мый в выражениях типа “ . стремится к бесконечности”. Дальнейшее развитие теории неархимедовых полей было целиком предоставлено алгебре.”

Этот стандартный вгляд, но мнению Робинсона, в не­которых отношениях “должен быть дополнен или даже изменен”. В доказательсто этого Робинсон приводит большое количество выдержек из сочинений Лейбница и других упомянутых выше авторов. Как считает Робин­сон, “ . отношение Лейбница к бесконечно большим и бесконечно малым величинам в Анализе в основном оставалось неизменным в течение двух последних десяти­летий его жизни. Он полностью одобрял их введение, но считал их “идеальными элементами, подобными мнимым числа. Эти идеальные элементы подчиняются тем же законам, что и обычные числа. Тем не менее они пред­ставляют собой не более чем удобные фикции, необходи­мые для облегчения рассуждений и открытий. Всегда, при желании, можно исключить их использование и вер­нуться к стилю античных математиков, рассуждая в тер­минах величин, достаточно больших (или малых) для того, чтобы ошибка была меньше любой наперед задан­ной. Все это отчетливо и неоднократно утверждается в сочинениях Лейбница”.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2021 - www.refsru.com - рефераты, курсовые и дипломные работы