Нестандартный анализ

Будем называть два выражения P(e)/Q(e) и R(e)/S(e) эквивалентными, если P(e)*S(e)=R(e)*Q(e) (равенство понимается как равенство многочле­нов, т. е. как равенство коэффициентов при одинаковых степенях). Легко проверить, что это определение дейст­вительно задает отношение эквивалентности, разбиваю­щее все выражения вида P(e)/Q(e) на классы. Эти классы мы и будем называть гипердействительными числ

а­ми. Сложение, вычитание, умножение и деление гипер­действительных чисел определяются по обычным прави­лам. Так, например, если a – класс, содержащий P/Q, а b – класс, содержащий R/S, то их суммой называется класс, содержащий (PS+RQ)/SQ, а произведением — класс, содержащий PR/QS. Легко проверить, чтоэто оп­ределение корректно, т. е. не зависит от выбора элемен­тов P/Q в классе a и R/S в классе b (в результате получаются разные представители одного и того же класса). Аналогичным образом можно определить взятие обратно­го и противоположного, нуль и единицу. Нетрудно про­верить, что все аксиомы поля при этом будут выполне­ны. Изложенная конструкция хорошо известна в алгеб­ре: построенное поле называется полем рациональных функций с коэффициентами в R и обозначается R(e).

Осталось определить только порядок, указав, как выбрать из двух различных гипердействительных чисел (т. е. из двух различных классов эквивалентных дро­бей) большее. Для этого нужно вычесть одно число из другого и определить, будет ли разность (отличная от нуля, поскольку числа различны) положительной или от­рицательной. Чтобы определить, будет ли отличное от нуля число a положительным или отрицательным, возь­мем его представитель P/Q. Здесь P, Q отличны от 0 (Q отлично от нуля по определению, Р – потому что, по нашему предположению, разность не равна 0). Вынесем в числителе и в знаменателе e в наибольшей возможной степени:

P=ek(ak+ak+1e+…), Q=el(bl+bl+1e+…), ak, bl отличны от 0.

Число a будет положительным, если ak, bl имеют одинаковые знаки, и отрицательным, если они имеют раз­ные знаки.

Построенное упорядоченное поле R(e) можно рассматривать как расширение поля R: достаточно отождествить действительное число х с классом эквивалентных дробей, содержащим дробь x/1. Осталось лишь показать, что аксиома Архимеда не вы­полняется, предъявив бесконечно малый элемент. Этим элементом будет, конечно, e (точнее, класс, содержащий e/1). В самом деле, e+e+ . +e <1, так как разность 1-ne положительна (знак определяется свободным чле­нном, а 1 > 0).

Искомое расширение построено.

6. НОВЫЕ ТРЕБОВАНИЯ К ГИПЕРДЕЙСТВИТЕЛЬНЫМ ЧИСЛАМ И ОСНОВНАЯ ГИПОТЕЗА

Мы построили неархимедово расширение R(e) поля действительных чисел. Новым требованием к гипердействительным числам яляется следующее. Нужно уметь вычислять «значения» стандартных функций (заданных первоначально как функции с дей­ствительными аргументами и значениями) на гипердействительных аргументах. Другими словами, для каждой функции f: R®R необходимо иметь ее «гипердействптельный аналог» *f: R®R. При этом, значения *f на стандартных числах должны совпадать с соответствующими значениями функции f. Другими сло­вами, *f должно быть продолжением f. Такие аналоги были у нас для операций сложения, вычитания, умно­жения и деления. Но этого мало: нужны такие ана­логи и для других функций.

Итак, для каждой стандартной функции f (функции с действительными аргументами и значениями) нам нуж­но иметь ее гипердействительное продолжение *f. Если от *f ничего не требовать, то это тривиально: можно счи­тать, что во всех действительных точках *f принимает те же значения, что и f, а в нестандартных точках *f имеет какие угодно значения (например, нули). Ясно, однако, что от такого продолжения никакого толку нет:

Нужно выделить некоторый класс свойств — класс тех свойств, которые мы хотим сохранить. Правильный выбор этого класса имеет решающее значение для успеха нашего построения системы гипердействительных чисел. Если этот класс будет слишком узок, то от наличия продолжений *f не будет пользы. Если же, напротив, он будет слишком широк, то сама возможность построения системы гипердействительпых чисел и определения продолжений окажется под угрозой.

Наша главная задача – описать, какие свойст­ва стандартных функций мы хотим сохранить при пере­ходе от действительных чисел к гипердействительным. Есть две возможности это сделать. Первая возможность состоит в применении методов математической логики. Можно сказать, что при переходе от действительных чи­сел к гипердействительным сохраняются все свойства, которые можно выразить на «языке первого порядка». Вторая возможность позволя­ет обойтись более «кустарными» средствами и не при­бегать к сведениям из логики. Конечно, при этом мы будем испытывать некоторые неудобства, использовать обходные маневры и т. п., но зато не потребуется зна­комство с математической логикой.

Мы предполагаем, что помимо поля R действительных чи­сел имеется более широкое упорядоченное поле *R гипердействительных чисел, включающее R как подмно­жество (еще раз подчеркнем, что существование *R с нужными свойствами является пока только гипотезой, а не доказанным фактом). Пусть для каждой функции f с действительными аргументами имеется ее естественное распространение, ее «гипердействительный аналог» — функция с гипердействительными аргументами и значе­ниями. При этом функция f может быть функцией не только одного действительного аргумента, но и двух, трех и т. д.; функция *f, разумеется, должна иметь то же самое число аргументов. Для простоты мы пока не будем рассматривать частичных функций и будем счи­тать, что f (соответственно *f) определена при всех действительных (соответственно гипердействительных) аргументах. Сформулируем теперь наше требование («ана­логи обладают теми же свойствами, что и исходные функ­ции») более точно.

Будем рассматривать системы уравнений вида t=s и неравенств вида t¹s, левые и правые части которых содержат какие-то действительные функции действитель­ных аргументов, действительные константы и перемен­ные — что-нибудь вроде

sin(cos(x))=y+exp(z), z¹y-2x, [z]=y

Эта система содержит переменные x, y, z, одноместные функции sin,cos,exp [ ] (целая часть), двуместные функции (сложение, вычитание, умножение) и констан­ту 2 (константы для единообразия мы будем считать функциями нуля аргументов). Все входящие в систему функции имеют по нашему предположению гипердействительные аналоги. Обозначим их *sin, *cos, *exp, *[ ], *+, *–, и напишем систему

*sin(*cos(x))=y*+*exp(z), z¹y*–2*x, *[z]=y

которую естественно назвать «гипердействительным аналогом исходной».

В качестве возможных значении переменных этой системы могут фигурировать любые гипердействительные числа. Тем самым приобретает смысл вопрос о наличии или отсутствии гипердействительных решений этой системы. Поскольку мы предполагаем, что входящие в нее функции являются продолжениями соответствующих функций действительного аргумента, то всякое (действительное) решение исходной системы будет одновременно решением новой системы. Таким образом, если исход­ная система имеет решения, то и ее гипердействительный аналог имеет решения. Мы потребуем и обратного:

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы