Частично насыщенные формации с заданной структурой подформаций
Теорема. Если
и
--- минимальный
-локальный спутник формации
, то справедливы следующие утверждения:
1)
;
2)
для всех
;
3)
и
--- некоторый фиксированный элемент из
, то
, где
для всех
,
и, кроме того,
;
4)
, где
и
для всех
Из теоремы и леммы непосредственно вытекает
Следствие. Пусть
и
--- минимальные
-локальные спутники формаций
и
соответственно. Тогда
в том и только в том случае, когда
.
Определение. Пусть
---
-насыщенная формация.
-Локальный спутник
формации
называется каноническим, если
и
для всех
.
Замечание 1. Согласно теореме всякая
-локальная формация
имеет
-локальный спутник
, который является каноническим. Такие спутники обозначают большими латинскими буквами.
Ясно, что если
и
--- произвольный внутренний
-локальный спутник формации
, то ввиду леммы
.
Если формация
, то
для всех
.
Из следствия теоремы следует
Лемма. Пусть
и
. Тогда
в том и только в том случае, когда
.
Определение. Через
,
обозначают такие
-локальные спутники
и
соответственно, что
и
для любого
.
Лемма. Пусть
--- минимальный
-локальный спутник формации
, где
. Тогда
--- минимальный
-локальный спутник формации
Доказательство. Пусть
.
И пусть
, а
--- минимальный
-локальный спутник формации
. Тогда, если
, то для любого
имеет место
. Значит,
. Понятно также, что
.
Пусть
. Тогда найдется такое
, что
. Значит, согласно теореме , имеет место
Лемма доказана.
Решетка
-насыщенных формаций
Результаты и методы общей теории решеток широко используются в различных областях современной математики. Наиболее широк диапазон применения этой теории в общей алгебре. Применение решеточных подходов в теории классов групп было впервые осуществлено в рамках теории многообразий групп. Позднее А.Н. Скибой было показано , что привлечение решеточных конструкций весьма полезно и при изучении формаций групп. Следует отметить, что существенную роль играет тот факт, что решетки всех формаций и всех насыщенных формаций модулярны . Эти результаты позволили широко использовать элементы общей теории решеток в вопросах изучения и классификации формаций групп. Широкий спектр применений решеточных конструкций при исследовании формаций представлен в монографии А.Н.Скибы , где, в частности, показано, что привлечение общей теории решеток при исследовании классов групп позволяет не только с успехом решать открытые вопросы, но и значительно упрощать доказательства многих уже известных теорем. Таким образом, дальнейшее развитие решеточных методов в теории классов алгебраических систем является актуальной задачей.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах
