Исследование функциональных последовательностей и рядов в вузе

Ответ: Доказана равномерная и абсолютная сходимость при .

Пример №18 (№89 из [10], c комментариями преподавателя).

С помощью признака Вейерштрасса показать, что ряд

сходится равномерно в промежутке .

Решение

Так как при R и числовой положительный ряд сходится, как обобщенный гармонический ряд с , то заданный функциональный ряд сходится равномерно и абсолютно при любых значениях .

Ответ: Доказана равномерная и абсолютная сходимость для R.

Пример №19 (№79 из [10], студент с помощью преподавателя).

Показать, что ряд сходится равномерно на отрезке .

Решение

Если , то . Значит, числовой положительный ряд является мажорантным. По признаку Даламбера абсолютной сходимости числовых рядов имеем: , так как , то числовой ряд сходится абсолютно.

Следовательно, по теореме Вейерштрасса равномерной и абсолютной сходимости функциональных рядов, ряд сходится при равномерно и абсолютно.

Если , то ряд примет вид - сходится. Значит, и заданный функциональный ряд сходится равномерно.

Если , то ряд примет вид - сходится. Значит, и заданный функциональный ряд сходится равномерно.

Итак, ряд сходится равномерно и абсолютно на отрезке .

Ответ: Доказана равномерная и абсолютная сходимость на отрезке . Пример №20 (№52 из [10], студент самостоятельно у доски).

Исследовать на равномерную сходимость ряд на всей числовой оси.

Решение

Так как при N и R, то в качестве мажорантного ряда выберем - числовой положительный ряд (ряд Дирихле). Он сходится. Следовательно, и ряд по теореме Вейерштрасса равномерно и абсолютно сходится, так как при R

Ответ: Доказана равномерная и абсолютная сходимость на интервале .

Пример №21 (№164 из [8], студент самостоятельно у доски).

Исследовать на равномерную сходимость ряд на интервале .

Решение

Если , то - условие равномерной сходимости не выполняется.

Если , то . Ряд мажорантный по отношению к ряду . По признаку Даламбера сходимости числовых рядов имеем: . Так как , то числовой ряд сходится. Значит, по теореме Вейерштрасса равномерно сходимости функциональных рядов, так как при , ряд сходится равномерно и абсолютно.

Ответ: Равномерно и абсолютно сходится при .

Преподаватель: Доказательство равномерной сходимости может быть и вспомогательной задачей, которую необходимо решить, чтобы выполнить основное задание.

Пример №22 (№94 из [10], с комментариями преподавателя).

Показать, что на луче функциональный ряд

равномерно сходится. Начиная с какого номера , остаток ряда (независимо от значения ) удовлетворяет неравенству ?.

Решение

Воспользуемся признаком Вейерштрасса.

Так как при справедливо неравенство: , то элементы заданного функционального ряда на указанном промежутке не больше соответствующих членов положительного числового ряда , т.е. при .

Числовой положительный ряд сходится, так как представляет собой сумму убывающей геометрической прогрессии с

, , .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы