Исследование функциональных последовательностей и рядов в вузе

Так как неравенства и равносильны, то, взяв , где - какое-нибудь целое положительное число, удовлетворяющее условию 48 src="images/referats/27276/image863.png">, приходим к неравенству . Итак, заданный функциональный ряд сходится абсолютно и равномерно при R. Члены ряда являются непрерывными функциями при R.

Производная общего члена заданного функционального ряда примет вид:

.

Исследуем ряд на сходимость. По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

так как , то условие абсолютной сходимости ряда не выполняется при R. Следовательно, ряд расходится.

Значит, к заданному функциональному ряду нельзя применить теорему о почленном дифференцировании.

Ответ: Теорему о почленном дифференцировании к ряду применить нельзя.

Пример №39 (№115 из [10]).

Показать, что ряд допускает почленное интегрирование на отрезке , написать полученный при этом ряд.

Решение

Функциональный ряд можно интегрировать почленно на отрезке , если на этом отрезке его члены непрерывны, и ряд равномерно сходится.

Элементы функционального ряда являются непрерывными функциями для R, значит, и на отрезке .

Кроме того, по признаку Вейерштрасса заданный функциональный ряд равномерно и абсолютно сходится на R, а, значит, и на отрезке . Действительно, так как:

а) для R, N;

б) при R;

в) - числовой положительный сходящийся ряд (сумма убывающей геометрической прогрессии с ).

Значит, теорему о почленном интегрировании можно применить к функциональному ряду на отрезке .

Ряд полученный при почленном интегрировании заданного ряда, примет вид на отрезке .

Ответ: при .

Пример №40 (№119 из [10])

Определить область существования функции и исследовать ее на дифференцируемость во внутренних точках существования.

Решение

Определим область сходимости ряда . По признаку Даламбера абсолютной сходимости функциональных рядов имеем:

,

если , т.е. , то заданный функциональный ряд сходится абсолютно.

При ряд примет вид . Полученный ряд сходится условно, так как удовлетворяет условиям признака Лейбница (признак сходимости числовых знакочередующихся рядов), т.е. и .

При ряд примет вид -расходящийся гармонический ряд.

Значит, - область сходимости заданного ряда, причем элементы ряда являются непрерывными функциями на всей области сходимости.

Найдем производную общего члена ряда: . Ряд из производных сходится при , как сумма убывающей геометрической прогрессии. Причем, элементы ряда также являются непрерывными при .

Значит, ряд можно продифференцировать во всех внутренних точках интервала .

Ответ: Заданный функциональный ряд можно почленно дифференцировать на интервале .

§9. Результаты пробация

В осеннем семестре 2003-2004 учебного года были апробированы лекционные и практические занятия, а также тест по теме "Функциональные последовательности и ряды" на втором курсе факультета математики и информатики СГПИ.

Материалы фондовых лекций по вышеуказанной теме были продемонстрированы студентам в электронном виде. Для проведения лекций использовался компьютер с TV-кодером и телевизор с большой диагональю экрана (71см). Текст лекции с жесткомагнитного диска подавался на экран и озвучивался лектором. Применяемая методика проведения лекционных занятий с использованием новейших информационных технологий позволила увеличить скорость подачи информации в 1,5 раза и улучшила качество содержания конспектов студентов.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы