Обеспечение безопасности, прогнозирование и разработка мероприятий по предупреждению и ликвидации чрезвычайной ситуации на компрессорной станции

К вторичным поражающим факторам относятся:

1. Обломки зданий и сооружений, разрушающихся во время взрыва. Нахождение людей во время завала, придавливание конструкциями разрушенных зданий и сооружений при обвалах.

2. Взрывы при разрушении емкостей, коммуникаций и агрегатов с газом.

Наиболее опасным следствием аварии разгерметизации газопровода с природным газом являются пожары и вз

рывы, в результате которых разрушаются и повреждаются производственные здания, техника и оборудование. В свою очередь, пожары и взрывы, могут стать вторичной причиной аналогичных явлений вследствие повреждений электропроводки, разрушения газопроводов, опрокидывания действующих огневых установок и приборов. Характерны обрушения перекрытий цехов во время пожаров при сильном перегреве металлических конструкций [10].

Для локализации зоны аварии и недопущения увеличения масштаба ЧС необходимо быстрое и эффективное выполнение АСДНР, их правильная организация

В режиме детонационного горения нагрузки значительно возрастают. Поэтому режим детонационного горения принят за расчетный случай для прогнозирования инженерной обстановки при авариях с взрывом.

К основным условиям, влияющим на параметры взрыва, относят: массу и тип взрывоопасного вещества, его параметры и условия хранения или использования в технологическом процессе, место возникновения взрыва, объемно-планировочные решения сооружений в месте взрыва.

Взрывы на промышленных предприятиях и базах хранения можно разделить на две группы - в открытом пространстве и производственных помещениях.

В производственных помещениях на промышленных предприятиях и базах хранения возможны взрывы газовоздушных смесей (ГВС), образующихся при разрушении газопроводов, резервуаров со сжатыми и сжиженными под давлением или охлаждением (в изотермических резервуарах) газами, а также при аварийном разливе легковоспламеняющихся жидкостей [9,11].

1.12.1 Взрывы газовоздушных смесей в производственных помещениях

Аварии со взрывом могут произойти на пожаровзрывоопасных объектах. К пожаровзрывоопасным объектам относятся объекты, на территории или в помещениях которых находятся (обращаются) горючие газы, легковоспламеняющиеся жидкости и горючие пыли в таком количестве, что могут образовывать взрывоопасные горючие смеси, при горении которых избыточное давление в помещении может превысить 5 кПа.

Последствия взрыва на пожаровзрывоопасных предприятиях определяются в зависимости от условия размещения взрывоопасных продуктов.

Если технологический аппарат со взрывоопасными продуктами размещен в зданиях, то авария развивается по сценарию взрыва в замкнутом объеме.

Кратко рассмотрим модели воздействия, позволяющие определить поля давлений при прогнозировании последствий взрывов в производственных помещениях.

Наиболее типичными аварийными ситуациями в этом случае считаются:

- разрушение аппарата или трубопровода со смешанными газами или жидкостями;

- потеря герметичности трубопроводов (разрыв сварного шва, прокладки, отрыв штуцера);

- образование или выброс горючей пыли.

В этом случае газо-, паро-, пылевоздушная смесь займет частично или полностью весь объем помещения. Затем этот объем заменяется расчетной сферой (в отличии от полусферы в открытом пространстве), радиус которой определяется с учетом объема помещения, типа и массы опасной смеси. При прогнозировании последствий считают, что процесс в помещении развивается в режиме детонации.

1.13 Оценка риска возникновения чрезвычайных ситуаций на компрессорной станции «Сергиевского ЛПУМГ»

Практика эксплуатации газовых сетей и сооружений показывает, что при повреждении отдельных элементов системы вытекающий газ может легко воспламениться, после чего начинается его интенсивное горение. Газ загорается, но взрывов при этом не бывает. Объясняется это тем, что взрывоопасен не сам газ, а его смесь с воздухом, так называемая газовоздушная смесь, и притом в строго определенной пропорции. Если в воздухе содержится газа меньше нижнего предела, то смесь не способна ни взрываться, ни гореть [4].

Учитывая причины аварии рассмотренные в пункте 1.9 данного раздела работы построена блок-схема развития различных аварийных ситуаций на магистральном газопроводе «Сергиевского ЛПУМГ» (рисунок 1.5), на основании блок-схемы, построено дерево событий (рисунок 1.6).

Рисунок 1.5 – Схема развития аварии на магистральном газопроводе

Дерево 2

Рисунок 1.6 – Дерево событий разрыва магистрального газопровода

Вероятность возникновения инициирующего события – разрушение газопровода, принята равной 1.

Значение частоты возникновения отдельного события или сценария пересчитывается путем умножения частоты возникновения инициирующего события на условную вероятность развития аварии по конкретному сценарию.

1 – разрыв газопровода;

2 – «вырывание» концов разрушенного газопровода из грунта на поверхность («в слабонесущих» грунтах) с разлетом осколков трубы;

3 – образование котлована в грунте (в «твердых» грунтах) с разлетом осколков трубы;

4 – истечение газа из газопровода в виде двух независимых высокоскоростных струй с одновременным образованием ударной воздушной волны;

5 – образование газовоздушного облака;

6 – истечение газа из котлована в виде «колонного» шлейфа с одновременным образованием ударной воздушной волны;

7 – воспламенение истекающего газа с образованием двух настильных струй пламени;

8 – рассеивание истекающего газа без воспламенения;

9 – рассеивание облака;

10 – взрыв газовоздушной смеси;

11 – рассеивание истекающего газа;

12 – воспламенение истекающего газа с образованием «столба» пламени.

Значение частоты возникновения сценария аварийной ситуации при разрыве газопровода, с воспламенением истекающего газа и образованием двух настильных струй пламени равно:

Рн.стр.пл = Р1· Р12 · Р24 · Р47 = 1·0,7·0,7·0,2= 9,8·10-2. (1.1)

Вероятность возникновения взрыва газовоздушной смеси:

Рвзр = Р1·Р13·Р35·Р510 = 1·0,3·0,05·0,01= 1,5·10-4. (1.2)

Вероятность возникновения «столба» пламени:

Рст.п. = Р1·Р13·Р36·Р612 =1·0,3·0,25·0,1= 7,5·10-3. (1.3)

Вероятность возникновения взрыва и пожара:

Рвзр пож= Р7+Р10+Р12= Р1· Р12 · Р24 · Р47 + Р1·Р13·Р35·Р510 + Р1·Р13·Р36·Р612= =1·0,7·0,7·0,2+1·0,3·0,05·0,01+1·0,3·0,25·0,1= 9,8·10-2+1,5·10-4 +7,5·10-3 =0,105(1.4)

Таким образом, наиболее вероятным сценарием развития аварии является разрушение газопровода без воспламенения, но, учитывая статистику ЧС, связанных с разрушением газопровода, наибольшие разрушающие последствия имеют разрывы с образованием опасной газовоздушной смеси c последующим разрушением зданий, поэтому будет рассматриваться именно этот сценарий ЧС.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32  33  34  35  36  37  38  39  40  41  42  43 


Другие рефераты на тему «Безопасность жизнедеятельности и охрана труда»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы