Анализ погрешностей спутниковой радионавигационной системы, работающей в дифференциальном режиме

Введение

Темой работы является анализ погрешностей спутниковой радионавигационной системы (СРНС), работающей в дифференциальном режиме. И включает в себя оценку влияния расположения подвижного пункта в условиях городской застройки, а именно выяснение влияния процессов затенения и отражения навигационных сигналов на основе экспериментальных данных.

СРНС пре

дназначены для всепогодного, пассивного, глобального, высокоточного навигационно-временного обеспечения всевозможных потребителей на поверхности Земли, в приземном и ближайшем космическом пространстве. В моем конкретном случае, использовались два приемника Ashtech SCA-12S, работающие с навигационной системой глобального позиционирования GPS.

Точность СРНС ухудшают ряд факторов, возникающих из-за влияния атмосферных явлений и солнечной радиации на параметры спутниковых сигналов, ухода часов спутников и т.п. Такие ошибки можно значительно уменьшить, применив дифференциальный режим работы с использованием стационарного навигационного приёмника, установленного в точке с заранее определёнными координатами. Такой приёмник называют базовым. С помощью этого приёмника можно вычислять корректирующие значения погрешностей, возникающих в дальномерных спутниковых сигналах.

Возможности аппаратуры в лаборатории спутниковой радионавигации, где и делается эта работа, позволяют принимать сигнал одновременно на две антенны двумя приемниками. То есть для возможны следующие основные варианты получения экспериментальных данных:

- простой прием и усреднение (в течение длительного времени);

- прием и дифференциальное уточнение;

- прием и дифференциальное уточнение с фазовой коррекцией.

Данная работа делается с целью выяснения того, причины каких именно погрешностей вносят наибольший вклад в ухудшение точности определения местоположения в условиях городской застройки.

Состав системы

Система «НАВСТАР» состоит из трех сегментов:

· космического сегмента;

· сегмента управления (CS - control sеgшеnt);

· сегмента потребителей.

Космический сегмент образован орбитальной группировкой, состоящей из 24 основных и 3 резервных навигационных космических аппаратов Block II (далее просто НКА). НКА распределены по шести плоскостям, которые разнесены по долготе на 60˚. В каждой плоскости находится четыре, и, возможно, один резервный НКА, которые двигаются по круговым орбитам с наклонением 55˚ и с полуосью около 26,5 тыс.км. Период обращения НКА составляет 12 часов.

Сегмент управления состоит из:

· Основной станции контроля и управления;

· Резервной станция контроля и управления;

· Четырех наземных антенн слежения;

· Шести наземных станций слежения.

Основная станция контроля и управления расположена на авиабазе Шривер, шт. Колорадо. Станции слежения расположены вдоль экватора, что обеспечивает благоприятные условия для наблюдения за НКА.

С помощью наземного сегмента управления осуществляются высокоточные измерения параметров орбит НКА, которые собираются и обрабатываются. Результатом обработки является информация об орбите, частотно временные поправки, ионосферные поправки. Полученная информация передается на борт НКА для последующей ретрансляции потребителю. Частота обновления ретрансляционной информации приблизительно раз в два часа.

Сегмент пользователей «НАВСТАР» составляют приемники GPS и сообщество пользователей системы. Приемники GPS преобразовывают сигналы спутников в оценки местоположения, скорости и времени. Приемники GPS используются для навигации, позиционирования, коррекции времени и других целей.

Основная задача системы «НАВСТАР» - навигация в трехмерном пространстве. Существуют навигационные приемники для летательных аппаратов, кораблей, сухопутных транспортных средств и для индивидуального использования.

Передаваемые каждым НКА системы «НАВСТАР» в составе оперативной информации эфемериды описывают положение фазового центра передающей антенны данного НКА в связанной с Землей геоцентрической системе координат WGS-84, определяемой следующим образом:

· начало координат расположено в центре масс Земли;

· ОСЬ Z направлена на Условный полюс Земли, как определено в рекомендации Международной службы вращения Земли (IERS);

· ОСЬ Х направлена в точку пересечения плоскости экватора и нулевого меридиана, определенного Международным бюро времени (BIH);

· ОСЬ Y дополняет геоцентрическую прямоугольную систему координат до правой.

Геодезические координаты точки в системе координат WGS-84 относятся к эллипсоиду, значения большой полуоси и полярного сжатия которого даны в таблице 1.5.

Геодезическая широта В точки М определяется как угол между нормалью к поверхности эллипсоида и плоскостью экватора.

Геодезическая долгота L точки М определяется как угол между плоскостью нулевого меридиана и плоскостью меридиана, проходящего через точку М. Положительное направление счета долгот - от нулевого меридиана к востоку.

Геодезическая высота Н определяется как расстояние по нормали от поверхности эллипсоида до точки М.

Фундаментальные геодезические константы и основные параметры общеземного эллипсоида, принятые в системе координат WGS-84 приведены в таблице 1.1.

Таблица 1.1 - Геодезические константы и параметры общеземного эллипсоида WGS-84

Угловая скорость вращения Земли

7.292115*10-5 радиан/с

Геоцентрическая константа гравитационного поля Земли с учетом атмосферы

398 600.5 км3/с2

Большая полуось эллипсоида

6 378 137 м

Коэффициент сжатия эллипсоида

1/298.257 223 563

Нормированный уровень коэффициента второй зональной гармоники потенциала (C20)

-484. 16685*10-6

1. Спутниковые радионавигационные системы

1.1 Принцип построения

Успехи ракетной техники, приведшие к созданию мощных носителей, способных обеспечить вывод на орбиты вокруг Земли искусственных спутников Земли (ИСЗ), привели к идее использовать их для целей навигации кораблей. Суть идеи заключается в следующем: если источник радиоизлучения (т.е. радиомаяк) поместить на ИСЗ и знать координаты его в любой момент времени, то навигационную задачу можно решить так же, как и в случае маяков наземного базирования, если обеспечить измерение геометрических величин относительно маяков с привязкой к той же шкале времени [3].

Для реализации идеи необходимо было решить следующие проблемы:

· обеспечить определение текущих координат и получение эфемерид ИСЗ, которые позволяют рассчитывать координаты в любой момент времени вперед;

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 
 31  32 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы