Интеграл Лебега-Стилтьеса

(13)

Аналогично можно убедиться в том, что (при )

(14)

(при этот интеграл обращается в нуль).

Теперь мы в состоянии доказат

ь теорему, в некотором смысле более общую, чем 2, а именно, отказаться от требования непрерывности функции:

Пусть функция в промежутке непрерывна, а имеет в этом промежутке, исключая разве лишь конечное число точек, производную , которая абсолютно интегрируема в . При этом пусть функция в конечном числе точек

терпит разрыв первого рода. Тогда существует интеграл Стилтьеса и выражается формулой

(15)

Характерно здесь наличие внеинтегральной суммы, где фигурируют скачки функции в точках или - односторонние.

Для упрощения записи введем обозначения для скачков функции справа и слева:

очевидно, для

Составим вспомогательную функцию:

которая как бы вбирает в себя все разрывы функции , так что разность , как мы сейчас установим, оказывается уже непрерывной.

Для значений , отличных от всех , непрерывность функции не вызывает сомнений, ибо для этих значений непрерывны обе функции и . Докажем теперь непрерывность в точке справа. Все слагаемые суммы , кроме члена , непрерывны при справа; поэтому достаточно изучить поведение выражения . При оно имеет значение ; но таков же и его предел при :

Аналогично проверяется и непрерывность функции в точке слева.

Далее, если взять точку (отличную от всех ), в которой функция имеет производную, то вблизи этой точки сохраняет постоянное значение, следовательно, в ней и функция имеет производную, причем

.

Для непрерывной функции , по предыдущей теореме, существует интеграл Стилтьеса

Точно так же легко вычислить и интеграл

Складывая почленно эти два равенства, мы и придем к равенству (15); существование интеграла Стилтьеса от по функции устанавливается попутно (п.4,3).

2.8 Примеры

Вычислить по формуле (11) интегралы:

а)

б)

в)

Решение:

а)

б)

в)

Вычислить по формуле (15) интегралы:

а) где

б) где

Решение:

а) Функция имеет скачок 1 при и скачок - 2 при ; в остальных точках . Поэтому

б) Скачок 1 при и - 2 при (значение функции при не влияет на результат); в прочих точках .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы