Интеграл Лебега-Стилтьеса

Геометрическая иллюстрация интеграла Стилтьеса

Рассмотрим интеграл

(20)

предполагая функцию непрерывной интеграл пол

ожительной, а - лишь монотонно возрастающей (в строгом смысле); функция может иметь и разрывы (скачки).

Система параметрических уравнений

(21)

выражает некоторую кривую , вообще говоря, разрывную (рис). Если при некотором функция испытывает скачок, так что , то этим предельным значениям отвечает одно интеграл то же предельное значение , равное . Дополним кривую всеми горизонтальными отрезками, соединяющими пары точек

и

отвечающие всем скачкам функции (см. рис). Таким образом, составится уже непрерывная кривая . Покажем, что интеграл (20) представляет площадь фигуры под этой кривой, точнее, площадь фигуры, ограниченной кривой , осью и двумя крайними ординатами, отвечающими абсциссам и .

С этой целью разложим промежуток на части точками

и в соответствии с этим промежуток на оси - на части точками

Введя наименьшее и наибольшее значения и функции в -м промежутке , составим нижнюю интеграл верхнюю суммы Стилтьеса-Дарбу

Легко видеть теперь, что они представляют площади фигур, составленных из входящих интеграл из выходящих прямоугольников, между которыми содержится рассматриваемая криволинейная фигура.

Так как при стремлении к 0 всех обе суммы стремятся к общему пределу (20), то отсюда следует, что наша фигура квадрируема и площадью её служит действительно интеграл (20).

2.10 Теорема о среднем, оценки

Пусть в промежутке функция ограничена:

а монотонно возрастает. Если существует интеграл Стилтьеса от по , то имеет место формула

(22)

Это и есть теорема о среднем для интегралов Стилтьеса.

Для доказательства будем исходить из очевидных неравенств для стилтьесовской суммы :

Переходя к пределу, получим

(23)

Или

Обозначая написанное отношение через , придем к (22).

Если функция в промежутке непрерывна, то обычным путем убеждаемся в том, что есть значение функции в некоторой точке этого промежутка, интеграл формула (22) приобретает вид

, где (24)

В практике интегралов Стилтьеса наиболее важным является случай, когда функция непрерывна, а функция имеет ограниченное изменение. Для этого случая справедлива такая оценка интеграла Стилтьеса:

(25)

Где

.

Действительно, для суммы Стилтьеса будет

так что остается лишь перейти к пределу, чтобы получить требуемое неравенство.

Отсюда вытекает, в частности, и оценка близости суммы к самому интегралу Стилтьеса (при прежних предположениях относительно функций и ). Представив и в виде

и почленно вычитая эти равенства, получим

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы