Плоские кривые

Новые методы исследования свойств кривых второго порядка развиваются в 19 столетии. Брианшон доказывает теорему, двойственную теореме Паскаля, и изучает проективные свойства гиперболы. Понселе исследует кривые второго порядка с помощью открытого им метода проективных соответствий. Штейнер и Шаль исследуют проективные свойства этих кривых на основе понятия двойного отношения и рассматривают их к

ак производные от образов первой ступени.

Критика аналитического метода исследования формы и свойств кривых была основана, как было уже сказано, на том обстоятельстве, что при пользовании этим методом отсутствует наглядный образ этой кривой и исчезают геометрические построения. Она дополнялась и другими соображениями. Указывалось, что система координат является посторонним элементом исследования, с которым кривая связывается искусственно.

Эти воззрения повели с одной стороны, к созданию так называемой алгебраической геометрии, основы которой были заложены Гессе и Клебшем. Исследование свойств кривых сводилось здесь к исследованию инвариантов алгебраических форм.

Крупнейшим достижением этого направления в исследовании кривых было создание общей теории алгебраических кривых. Особые достижения в развитии этой теории связываются с именем Плюккера. Однако в алгебраической геометрии полностью отрешиться от системы координат как постороннего элемента всё-таки не удалось.

Другое направление привело к представлению о так называемом натуральном уравнении кривой. Натуральное уравнение уже не зависит от положения системы координат и от вида её; точнее говоря, оно не предполагает вообще наличия системы координат. Это уравнение функционально связывает радиус кривизны кривой и длину её дуги, т.е. те элементы, которые органически связаны с самой природой исследуемой линии. Было доказано, что натуральное уравнение полностью определяет кривую с точностью до её положения на плоскости. Наибольших успехов это направление исследования кривых достигло в работах Чезаро, который присвоил ему название внутренней или натуральной геометрии.

В заключение о плодотворной идее использования векторного аппарата при исследовании свойств линий, которая связывается с именем Грассмана, и о топологическом методе исследования кривых, имеющих наиболее сложные формы.

2. Способы образования кривых

Исследование особенностей формы кривой и её свойств средствами дифференциальной геометрии возможно, когда кривая выражена в аналитической форме, т.е. уравнением. Однако, прежде чем исследовать уравнение кривой, необходимо его составить на основании некоторых данных. Для этого надо рассмотреть способы образования кривых. [1]

1. Кривая определяется как линия пересечения данной поверхности плоскостью, положение которой определено.

В истории развития учения о кривых этот способ является первым. Греки определяли кривые второго порядка как сечения кругового конуса. Таково же происхождение кривых Персея, получаемых в результате сечений плоскостью поверхности тора. Эвольвента круга может быть определена как линия пересечения поверхности касательных к винтовой линии, перпендикулярной к её оси и т.д.

2. Кривая определяется как геометрическое место точек, обладающих данным свойством.

Этот способ особенно употребителен. Он широко практиковался ещё греческими математиками; так Евклид рассматривал конические сечения как геометрические места точек, сохраняющих постоянное отношение расстояний от данной точки и от данной прямой. Как геометрическое место точек была определена Диоклесом его циссоида. Таким же способом определяет Никомед конхоиду. Такие линии, как овалы Декарта, овалы Кассини, улитка Паскаля, строфоида, верзиера и целый ряд других кривых, определяются обычно как геометрические места.

3. Кривая определяется как траектория точки, характер движения которой обусловлен тем или иным образом.

Кинематический способ образования линий был также хорошо известен греческим учёным. Как траекторию точки, участвующей одновременно в двух равномерных движениях, одно из которых совершается по прямой, а другое – по окружности, определил Архимед свою спираль. Все циклоидальные кривые являются траекториями точки, жёстко связанной с кругом, который катится без скольжения по окружности другого круга. Кинематическим путём определяется квадратриса Динострата как траектория точки пересечения вращающегося радиуса окружности с хордой, двигающейся параллельно самой себе. Лемниската Бернулли может быть определена как траектория середины большого звена шарнирного антипараллелограмма, противоположное звено которого закреплено. Кинематически определяются розы, кривые скольжения и многие другие линии. Кинематический способ задания кривой полагался Декартом в основу определения кривых методом координат.

4. Образование линий по способу сопряжения проективно соответствующих элементов.

Этот способ сравнительно недавнего происхождения и во всей полноте рассматривается в курсах проективной геометрии. В основу его полагается идея соответствия двух проективных рядов точек или двух проективных пучков.

Проективно соответствующими называются два прямолинейных ряда точек, если любым четырём гармоническим точкам одного из них соответствуют также четыре гармонические точки второго ряда. Аналогично определяется проективное соответствие пучков прямых. На основе этих понятий и возникает проективный способ образования линий. Так, если имеюся два проективных пучка прямых, то геометрическое место точек пересечения соответствующих прямых этих пучков представляет собой кривую второго порядка (рис. 1, а).

Точно так же, если заданы два проективно связанных прямолинейных ряда точек, то огибающая прямых, проходящих через соответствующие точки этих рядов, будет представлять собой кривую второго класса и одновременно второго порядка (рис. 1, б).

Рис. 1

На кривой второго порядка могут быть в свою очередь определены гармонические четвёрки точек, т.е. точки пересечения этой кривой с четырьмя гармонически сопряжёнными лучами пучка прямых, центр которого находится в какой-либо точке этой кривой. Так возникает понятие криволинейного проективного ряда, который в отличие от прямолинейного ряда называется проективным рядом второго порядка. Аналогично устанавливается понятие пучка второго порядка, под которым понимают упомянутую выше совокупность прямых, проходящих через соответствующие точки двух прямолинейных проективных рядов и огибающих кривую второго порядка.

Понятие ряда второго порядка и пучка второго порядка позволяет определить проективным способом алгебраические кривые высших порядков и классов.

Частным случаем проективного соответствия является перспективное соответствие, которое осуществляется путём проектирования двух плоских систем из общего центра. Соответствующие точки при этом лежат на одном проектирующем луче. а соответствующие прямые принадлежат одной пректирующей плоскости.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы