Плоские кривые

Но помимо этой особенности, у трансцендентных кривых могут быть характерные точки особой природы, которые не существуют у алгебраических кривых. К ним относятся точки прекращения, обладающие той особенностью, что окружность достаточно малого радиуса, проведённая из такой точки как из центра, пересекает кривую только в одной точке (например, кривая y=xlnx, имеющая точку прекращения в начале коор

динат). Сюда относятся также угловые точки, в которых прекращаются две ветви кривой, причём каждая из них имеет в этой точке свою касательную (например, кривая , имеющая угловую точку в начале координат).

Трансцендентная кривая может иметь также ассимптотическую точку, к которой неограниченно приближается ветвь кривой, делая вокруг этой точки бесконечное количество оборотов (например, логарифмическая спираль r= аj, для которой ассимтотической кривой является полюс).

Помимо указанных характерных точек, трансцендентные кривые могут обладать весьма своеобразными особенностями формы. Кривая может иметь, например, пунктирную ветвь, состоящую из бесконечного множества изолиованных точек (например, кривая имеет пунктирную ветвь, располагающуюся вдоль отрицательной части абцисс и состоящую из множества изолированных точек с абциссами -p, -2p, -3p,…).

До сих пор нет удовлетворительной классификации трансценденных кривых. Попытки определить основы теории трансцендентных кривых были мало состоятельны.

Одна из таких попыток заключалась в следующем. Было замечено, что у подавляющего числа известных трансцендентных кривых, также как и у всех алгебраических кривых, угловой коэффициент касательной в каждой точке кривой является корнем алгебраического уравнения, коэффициенты которого представляют собой полиномы от х и у. Иными словами, дифференциальные уравнения подавляющего большинства известных в науке трансцендентных кривых являются уравнениями первого порядка вида

4. Кривые, изучаемые в школьном курсе математики

Эллипсом называется множество точек плоскости, для каждой из которых сумма расстояний до двух данных точек, называемых фокусами, есть величина постоянная и большая, чем расстояние между фокусами, есть величина постоянная и большая, чем расстояние между фокусами. [9, 10]

Уравнение называется каноническим уравнением эллипса.

Можно выделить следующие свойства эллипса (см. рис. 13):

1. Точка О (0; 0) принадлежит эллипсу;

2. х и у входят в уравнение чётной системы, поэтому если точка М (х; у) принадлежит эллипсу, то эллипсу принадлежит точка М1(-х; у), М2(х; – у), М3(-х; – у), следовательно, эллипс – фигура, симметричная относительно Ох, Оу, начала координат. Оси Ох, Оу, являются осями симметрии эллипса. Можно доказать, что эллипс, отличный от окружности, не имеет других осей симметрии;

3. Найдём точки пересечения с осями координат:

Рис. 13

С осью Ох: у=0 А1(а; 0), А2(-а; 0)

С осью Оу: х=0, В1(b; 0), B2(-b; 0)

a >b, т. к. b2 = a2 – b2, следовательно А1A2 – большая ось эллипса, В1В2 – малая ось эллипса;

Исследуем поведение эллипса в первой четверти:

, следовательно, .

Так, с возрастанием х от 0 до а у < b, то функция у в первой четверти убывающая. При х = 0, у = b; при х = а у = 0, А1A2 – вершины эллипса.

Гиперболой называется геометрическое место точек, для каждой из которых абсолютная величина разности расстояний до двух фиксированных точек плоскости, называемых фокусами, есть данное положительное число 2а, меньшее, чем расстояние 2с между фокусами. [5]

Каноническим уравнением гиперболы является уравнение . Оно используется для изучения её геометрических свойств (см. рис. 14):

1. Точка О (0; 0) не принадлежит гиперболе.

2. Гипербола симметрична относительно осей и начала координат. Так же как и в случае эллипса, точка О является центром симметрии гиперболы, а прямые Ох и Оу – осями симметрии. Центр симметрии называется центром гиперболы.

3. С осью Ох: у=0 , А1(а; 0), А2(-а; 0)

С осью Оу: х=0, , В1(b; 0), B2(-b; 0)

Рис. 14

4. Т. о. х = – а и х = а – точки гиперболы лежат вне полосы. [14]

Параболой называется геометрическое место точек, для каждой из которых расстояние до некоторой фиксированной точки плоскости, называемой фокусом, равно расстоянию до некоторой фиксированной прямой, не проходящей через фокус, и называемой директриссой. [7, 8]

Расстояние от фокуса параболы до её директрисы называется параметром параболы. Эксцентриситет параболы принимается равным единице.

Уравнение у = 2 рх является каноническим уравнением параболы. Каноническое уравнение параболы также используется для изучения её геометрических свойств (см. рис. 15):

Рис. 15

1. Точка О (0; 0) принадлежит гиперболе;

2. Если точка М (х; у) принадлежит параболе, то точка М1(х; – у) также принадлежит параболе, следовательно, парабола симметрична относительно Оу.

3. Из уравнения параболы у – любое, , т.е. «ветви» параболы расположатся в положительной полуплоскости, относительно Оу.

4. В I четверти , при , . В первой четверти у возрастает. [13]

5. Цели и задачи факультативных занятий

В настоящее время традиционный взгляд на содержание обучения математике, её роль и место в общем образовании пересматривается и уточняется. Для продуктивной деятельности в современном мире требуется достаточно прочная базовая математическая подготовка.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы