Теоретические основы математических и инструментальных методов экономики

Определение 18.6 Два вектора евклидова пространства называются ортогональными, если их скалярное произведение равно нулю.

Определение 18.7 Комплексное линейное пространство, в котором введено скалярное произведение, называется унитарным пространством.

В унитарном пространстве модуль вектора и условие ортогональности вводятся с помощью скалярного произведения так же, как в

евклидовом пространстве. В координатной записи

Гильбертово пространство, математическое понятие, обобщающее понятие евклидова пространства на бесконечномерный случай. Возникло на рубеже 19 и 20 вв. в виде естественного логического вывода из работ нем. математика Гильберта в результате обобщения фактов и методов, относящихся к разложениям функций в ортогональные ряды и к исследованию интегральных уравнений. Постепенно развиваясь, понятие «Г. п.» находило все более широкие приложения в различных разделах математики и теоретической физики; оно принадлежит к числу важнейших понятии математики.

Первоначально Г. п. понималось как пространство последовательностей со сходящимся рядом квадратов (т.н. пространство l2). Элементами (векторами) такого пространства являются бесконечные числовые последовательности

x = (x1, x2, ., xn, .)

такие, что ряд x21 + x22 + . + х2n + . сходится. Сумму двух векторов х + y и вектор lx, где l — действительное число, определяют естественным образом:

x + y = (x1 + y1, ., xn + yn, .),

lx = (lx1, lx2, ., lxn, .)/

Для любых векторов х, y Î l2 формула

(x, y) = x1y1 + x2y2 + . +xnyn + .

определяет их скалярное произведение, а под длиной (нормой) вектора х понимается неотрицательное число

Скалярное произведение всегда конечно и удовлетворяет неравенству |(х, у)| £ ||x|| ||y||. Последовательность векторов хn называется сходящейся к вектору х, если ||хn—х|| ® 0 при n ® ¥. Многие определения и факты теории конечномерных евклидовых пространств переносятся и на Г. п. Например, формула

где 0 £ j £ p определяет угол j между векторами х и у. Два вектора х и у называются ортогональными, если (х, у) = 0. Пространство l2 полно: всякая фундаментальная последовательность Коши элементов этого пространства (т.е. последовательность хn, удовлетворяющая условию ||хп—хm||® 0 при n, m ® ¥) имеет предел. В отличие от евклидовых пространств, Г. п. l2 бесконечномерно, т.е. в нём существуют бесконечные системы линейно независимых векторов; например, такую систему образуют единичные векторы

e1 = (1, 0, 0, .), e2 = (0, 1, 0, .), .

При этом для любого вектора x из l2 имеет место разложение

x = x1e1 + x2e2 + . (1)

по системе {en}.

Операторы (общие понятия). Функционалы. Пусть X, Y — линейные пространства; отображение A: X ® Y называется линейным, если для x, у Î X, l, m Î ,

где x1, ., xn и (Ax)1, ., (Ax) n — координаты векторов x и Ax соответственно. При переходе к бесконечномерным линейным топологическим пространствам положение значительно усложняется. Здесь прежде всего необходимо различать непрерывные и разрывные линейные операторы (для конечномерных пространств они всегда непрерывны). Так, действующий из пространства L2 (а, b) в него же оператор

(где K (t, s) — ограниченная функция — ядро А) — непрерывен, в то время как определённый на подпространстве C1(a, b) Ì L2(a, b) оператор дифференцирования

является разрывным (вообще, характерной особенностью разрывных операторов является то, что они не определены на всём пространстве).

Линейный функционал, обобщение понятия линейной формы на линейные пространства. Линейным функционалом f на линейном нормированном пространстве Е называют числовую функцию f(x), определённую для всех х из Е и обладающую следующими свойствами:

1) f(x) линейна, т. е. f((x + (у) = (f(x) + (f(y),

где х и у — любые элементы из Е, a и b — числа;

2) f(x) непрерывна.

Непрерывность f равносильна требованию, чтобы было ограничено в Е; выражение называют нормой f и обозначают .

В пространстве С [a, b] функций a(t), непрерывных при a ( t ( b, с нормой Л. ф. являются, например, выражения:

,

f2[((t)] = ((t0), a ( t0 ( b.

В гильбертовом пространстве Н Л. ф. суть скалярные произведения (l, х), где l — любой фиксированный элемент пространства Н; ими исчерпываются все Л. ф. этого пространства.

Во многих задачах можно из общих соображений установить, что та или иная величина является Л. ф. Например, к Л. ф. приводит решение линейных дифференциальных уравнений с линейными краевыми условиями. Поэтому очень существенным является вопрос об общем аналитическом выражении Л. ф. в разных пространствах.

Совокупность всех Л. ф. данного пространства Е превращается в линейное нормированное пространство , если определить естественным образом сложение Л. ф. и умножение их на числа. Пространство называют сопряжённым к ; это пространство играет большую роль при изучении Е.

С понятием Л. ф. связано понятие слабой сходимости. Последовательность {xn} элементов линейного нормированного пространства называют слабо сходящейся к элементу х, если

Моделирование как метод научного познания. Понятия модели и моделирования. Элементы и этапы процесса моделирования. Виды моделирования. Особенности математического моделирования экономических объектов. Производственно-технологический и социально-экономический уровни экономико-математического моделирования. Особенности экономических наблюдений и измерений. Случайность и неопределенность в экономико-математическом моделировании. Проверка адекватности моделей.

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в. Однако методология моделирования долгое время развивалась независимо отдельными науками. Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы