Геометрия Лобачевского

Список Гильберта содержит 20 аксиом, которые разделяются на пять групп.

Группа I. Аксиомы принадлежности.

Аксиомы этой группы определяют свойства взаимного расположения точек, прямых и плоскостей, выражаемые словом «принадлежит» (или «лежит на», «проходит через»). Группа I содержит следующие восемь аксиом.

I1. Каковы бы ни были две точки А, В, существует прямая а, проходящая через э

ти точки.

I2. Каковы бы ни были две точки А и В, существует не более одной прямой, проходящей через эти точки.

I3. На каждой прямой лежат по крайней мере две точки. Существуют по крайней мере три точки, не лежащие на одной прямой.

I4. Каковы бы ни были три точки А, В, С, не лежащие на одной прямой, существует плоскость α, проходящая через эти точки. На каждой плоскости лежит хотя бы одна точка.

I5. Каковы бы ни были три точки, не лежащие на одной прямой, существует не более одной плоскости, проходящей через эти точки.

I6. Если две точки А и В прямой а лежат в плоскости α, то каждая точка прямой а лежит в плоскости α.

В этом случае говорят, что прямая а лежит в плоскости α или плоскость α проходит через прямую а.

I7. Если две плоскости α и β имеют общую точку А, то они имеют по крайней мере еще одну общую точку В.

I8. Существуют по крайней мере четыре точки, не лежащие в одной плоскости.

Исходя из этих аксиом, можно доказать ряд теорем, большинство из которых в школьном курсе геометрии не доказываются, так как они наглядно очевидны. Перечислим некоторые из этих теорем.

1. Две прямые имеют не более одной общей точки.

2. Если две плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих двух плоскостей.

3. Через прямую и не лежащую на ней точку, так же как через две пересекающиеся прямые, проходит одна и только одна плоскость.

4. На каждой плоскости существуют три точки, не лежащие на одной прямой.

Группа II. Аксиомы порядка.

Предполагается, что точка на прямой может находиться в известном отношении к двум другим точкам той же прямой; это отношение выражается словами «лежать между». Если точка В лежит между точкой А и точкой С, то мы запишем так: А — В — С. При этом должны быть удовлетворены следующие четыре аксиомы.

II1. Если А — В — С, то А, В, С — различные точки одной прямой и С — В — А.

II2.Каковы бы ни были две точки А и В, существует по крайней мере одна точка С на прямой АВ, такая, что А — В — С.

IIз. Среди любых трех точек прямой существует не более одной точки, лежащей между двумя другими.

По Гильберту, отрезком АВ (или ВА) называется пара точек A и B. Точки А и В называются концами отрезка, а любая точка, лежащая между ними,— внутренней точкой отрезка или просто точкой отрезка.

II4 (аксиома Паша). Пусть А, В, С — три точки, не лежащие на одной прямой, а а — прямая в плоскости ABC, не проходящая ни через одну из точек А, В, С. Тогда если прямая а проходит через точку отрезка АВ, то она проходит также через точку отрезка АС или ВС.

Можно доказать, что утверждение, сформулированное в аксиоме Паша, верно и в том случае, когда точки А, В и С лежат на одной прямой. Нетрудно также доказать, что если прямая а пересекает какие-либо два из трех отрезков АВ, ВС и АС, то она не пересекает третий из этих отрезков.

С помощью аксиом групп I и II доказываются многие факты геометрии и вводится ряд основных определений. Прежде всего можно доказать, что между любыми точками существует по крайней мере одна точка, а отсюда легко прийти к выводу, что любой отрезок (а следовательно, и любая прямая) содержит бесконечное множество точек. Заметим, однако, что с помощью аксиом I и II групп нельзя доказать, что это множество несчетное. В дополнение к аксиоме IIз можно доказать, что из трех точек прямой всегда одна точка лежит между двумя другими.

Аксиомы групп I и II позволяют ввести такие важные понятия геометрии, как понятия полуплоскости, луча и полупространства. В качестве примера введем понятие полуплоскости. Предварительно докажем следующую теорему о полуплоскости.

Теорема. Прямая а, лежащая в плоскости α, разделяет множество точек, этой плоскости, не лежащих на прямой а, на два непустых подмножества так, что если точки А и В принадлежат одному подмножеству, то отрезок АВ не имеет общих точек с прямой а; если же эти точки принадлежат разным подмножествам, то отрезок АВ имеет общую точку с прямой а.

доказательство

Каждое из подмножеств точек, определяемых предыдущей теоремой, называется полуплоскостью плоскости α с границей а.

Группа III. Аксиомы конгруэнтности.

Предполагается, что отрезок (угол) находится в известном отношении к какому-то отрезку (углу). Это отношение выражается словом «конгруэнтен» и обозначается символом «». Должны быть удовлетворены следующие пять аксиом.

III1. Если даны отрезок АВ и луч, исходящий из точки А', то существует точка В', принадлежащая данному лучу, такая, что АВ А'В'.

Можно доказать, что точка В' на данном луче единственная.

III2. Если А'В' АВ и А"В" АВ, то А'В' А"В".

IIIз. Пусть А - В - С, А' - В' - С', АВ А'В' и ВС В'С'. Тогда АС А'С'.

III4. Пусть даны hk и флаг (О', h', λ'). Тогда в полуплоскости λ’ существует один и только один луч k', исходящий из точки О', такой, что hk h'k'.

Каждый угол конгруэнтен самому себе.

III5. Пусть А, В, С — три точки, не лежащие на одной прямой, и А', В', С' — тоже три точки, не лежащие на одной прямой. Если при этом

АВ А'В', АС А'С'. BAC В'А'С', то АВС А'В'С'.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы