Определенный интеграл

Из условия задачи следует, что , . По формуле (9) получаем

.

Рис. 10

Рис. 11

Объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной прямыми у = с и у = d, осью Оу и графиком непрерывной на отрезке функции (рис. 12), определяется по формуле

. (10)

х = j (у)

Рис. 12

Пример 14. Вычислить объем тела, полученного вращением вокруг оси Оу криволинейной трапеции, ограниченной линиями х2 = 4у, у = 4, х = 0 (рис. 13).

Решение. В соответствии с условием задачи находим пределы интегрирования: , . По формуле (10) получаем:

.

Рис. 13

3. Длина дуги плоской кривой

Пусть кривая , заданная уравнением , где , лежит в плоскости (рис. 14).

Рис. 14

Определение. Под длиной дуги понимается предел, к которому стремится длина ломаной линии, вписанной в эту дугу, когда число звеньев ломаной стремится к бесконечности, а длина наибольшего звена стремится к нулю.

Если функция и ее производная непрерывны на отрезке , то длина дуги кривой вычисляется по формуле

. (11)

Пример 15. Вычислить длину дуги кривой , заключенной между точками, для которых .

Решение. Из условия задачи имеем . По формуле (11) получаем:

.

4. Несобственные интегралы с бесконечными пределами интегрирования

При введении понятия определённого интеграла предполагалось, что выполняются следующие два условия:

а) пределы интегрирования а и являются конечными;

б) подынтегральная функция ограничена на отрезке .

Если хотя бы одно из этих условий не выполняется, то интеграл называется несобственным.

Рассмотрим вначале несобственные интегралы с бесконечными пределами интегрирования.

Определение. Пусть функция определена и непрерывна на промежутке , тогда

(12)

называется несобственным интегралом с бесконечным верхним пределом интегрирования (несобственным интегралом I рода).

Если существует и конечен, то несобственный интеграл называется сходящимся; если данный предел не существует или равен , то несобственный интеграл называется расходящимся.

Геометрически несобственный интеграл от неотрицательной функции выражает площадь бесконечной криволинейной трапеции, ограниченной сверху графиком функции , снизу – осью , слева – отрезком прямой и неограниченной справа (рис. 15).

Если несобственный интеграл сходится, то эта площадь является конечной; если несобственный интеграл расходится, то эта площадь бесконечна.

Рис. 15

Аналогично определяется несобственный интеграл с бесконечным нижним пределом интегрирования:

. (13)

Этот интеграл сходится, если предел в правой части равенства (13) существует и конечен; в противном случае интеграл называется расходящимся.

Несобственный интеграл с двумя бесконечными пределами интегрирования определяется следующим образом:

, (14)

где с – любая точка интервала . Интеграл сходится только в том случае, когда сходятся оба интеграла в правой части равенства (14).

Пример 16. Исследовать на сходимость несобственные интегралы:

а) ; б); в) ; г) .

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы