Определенный интеграл

4. Формула Ньютона–Лейбница

Вычисление определенных интегралов через предел интегральных сумм связано с большими трудностями. Поэтому существует другой метод, основанный на тесной связи, существующей между понятиями определенного и неопределенного интегралов.

Теорема 2. Если функция непрерывна на отрезке width=44 height=24 src="images/referats/11761/image004.png">и – какая-либо ее первообразная на этом отрезке, то справедлива следующая формула:

, (2)

которая называется формулой Ньютона–Лейбница. Разность принято записывать следующим образом:

,

где символназывается знаком двойной подстановки.

Таким образом, формулу (2) можно записать в виде:

.

Нахождение определенных интегралов с помощью формулы Ньютона-Лейбница осуществляется в два этапа: на первом этапе находят некоторую первообразную для подынтегральной функции ; на втором – находится разность значений этой первообразной на концах отрезка .

Пример 1. Вычислить интеграл .

Решение. Для подынтегральной функции произвольная первообразная имеет вид . Так как в формуле Ньютона-Лейбни-ца можно использовать любую первообразную, то для вычисления ин- теграла возьмем первообразную, имеющую наиболее простой вид: . Тогда .

Пример 2. Вычислить интеграл .

Решение. По формуле Ньютона-Лейбница имеем:

.

5. Замена переменной в определенном интеграле

Теорема 3. Пусть функция непрерывна на отрезке . Тогда, если: 1) функция и ее производная непрерывны при ; 2) множеством значений функции при является отрезок ; 3) , , то справедлива формула

, (3)

которая называется формулой замены переменной в определенном интеграле.

Заметим, что как и в случае неопределенного интеграла, использование замены переменной позволяет упростить исходный интеграл, приблизив его к табличному. При этом в отличие от неопределенного интеграла в данном случае нет необходимости возвращаться к исходной переменной интегрирования – достаточно лишь найти новые пределы интегрирования и (для этого надо решить относительно переменной t уравнения и )).

На практике часто вместо подстановки используют подстановку . В этом случае нахождение новых пределов интегрирования по переменной t упрощается: , .

Пример 3. Вычислить интеграл

Решение. Введем новую переменную по формуле . Определим и . Возведя в квадрат обе части равенства , получим , откуда . Находим новые пределы интегрирования. Для этого в формулуподставим старые пределы и . Получим: , откуда и, следовательно, ; , откуда и, следовательно, . Таким образом:

.

Пример 4. Вычислить интеграл .

Решение. Воспользуемся универсальной тригонометрической подстановкой. Положим , откуда , . Найдем новые пределы интегрирования: если , то ; если , то . Значит, . Следовательно:

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы