Проектирование автоматической системы управления температурным режимом печи пиролиза П-101 установки получения технического водорода

Передаточную функцию устройства ввода воздействия от возмущения целесообразно выбирать в виде:

(4.3)

Рассчитаем устройство ввода компенсирующего воздействия.

Возмущение по температуре топочных газов на перевале подается на вход эквивалентного объекта:

(4.4)

Структурная схема комбинированной системы управления в Simulink представлена на рисунке 4.17.

Безымянный.bmp

Рис. 4.18. Модель комбинированной АСР.

Сравним работу комбинированной с одноконтурной системой по каналу внешнего возмущения.

Рис. 4.18. Выход комбинированной и одноконтурной систем при отработке внешнего возмущения.

Таблица 4.2. Сравнение одноконтурной и комбинированной АСР температуры.

Режим работы

По возмущению

АСР

Одноконтурная

Комбинированная

Время регулирования T, c

7790

5360

Степень затухания y

0,83

0,95

Максимальный выброс, ºС

1

0,09

Из анализа рисунка 4.18 видно, что комбинированная система надежно отрабатывает внешние возмущения. Выброс и время регулирования в системе с компенсатором меньше, чем в системе без него.

4.7 Расчет и моделирование системы с учетом нелинейностей

При реализации АСР на реальном объекте на качество переходного процесса влияют нелинейности ТСА. Принимая во внимание эту особенность, необходимо смоделировать АСР с учетом таких нелинейностей.

Для моделирования системы с учетом нелинейностей необходимо знать зону нечувствительности датчиков, используемых на объекте, а также люфт исполнительного устройства (клапана).

1) Термопара YOKOGAWA CH тип Кс нормирующим преобразователем YTA310: класс точности равен 0,5%, рабочая температура- 850 оС

2) Для измерения расхода пара и исходного газа выберем Вихревой расходомер Digital YEWFLO фирмы Yokogawa:

3)ИМ: люфт 0,05.

Приблизим полученные модели к реальным условиям, т.е. подадим возмущения, наложим случайные помехи на сигнал возмущения и учтем нелинейность элементов. Тогда модели примут следующий вид – рисунки 4.20, 4.21.

Рис. 4.20. Модель каскадной АСР температуры продукта с учетом нелинейностей.

Рис. 4.21. Модель комбинированной АСР температуры продукта с учетом нелинейностей.

Рис. 4.22. Выход АСР температуры с нелинейностями и без нелинейностей по каналу задания.

Рис. 4.23. Выход АСР температуры с нелинейностями и без нелинейностей по каналу внешнего возмущения.

4.8 Реализация системы управления

Смоделированную систему управления предлагается реализовать в распределенной системе управления CS-3000 фирмы Yokogawa.

Обычно, при конфигурировании используется следующая последовательность разработки:

1. Сначала принимаются общие концептуальные решения, которые относятся к системе в целом и ко всему объекту.

2. Переход на следующий уровень детализации системы, на котором принимаются решения о логическом представлении системы в виде областей. Области являются логическими составляющими представления системы управления процессом. Они могут соответствовать как конкретным аппаратам системы, так и основным технологическим функциям.

3. На следующем уровне детализации системы в областях выделяются модули, управляющие элементами оборудования. Разработчик может использовать уже существующие модули из библиотеки в качестве отправной точки для создания модулей, необходимых для реализации стратегии управления.

В системе используется модульный принцип при разработке стратегии управления. Управляющие модули являются уникальными поименованными управляющими единицами. Они содержат группу логически взаимосвязанных системных объектов и имеют имя – тег. Обычно, управляющие модули представляют управляющее оборудование технологического процесса, такое, как клапаны, задвижки, насосы, мешалки и т. д.

Функциональные блоки – это основные компоненты управляющего модуля, то есть, это блоки, из которых строится управляющая модель. Каждый функциональный блок содержит в себе управляющий алгоритм (такой как ПИД, Аналоговый Выход или Аналоговый Вход). Будучи соединенными вместе, в определенной последовательности, несколько функциональных блоков образуют управляющую модель.

Задание параметров функциональных блоков.

На рис. 4.8.1 показана схема управления температурным режимом печи П-101.

Рис. 4.8.1

4.9 Выводы

В ходе выполнения данного раздела было выполнено следующее:

1. Рассчитаны и смоделированы одноконтурные системы регулирования по каналам температуры на выходе печи П-101, расхода топливного газа. Получены оптимальные настройки ПИ регуляторов.

2. Рассчитана и смоделирована каскадная система регулирования температуры на выходе печи. Установлено, что каскадная САР, по сравнению с одноконтурной, практически мгновенно ликвидирует внутренние возмущающие воздействия.

3. Для уменьшения влияния внешних возмущений на систему была рассчитана и смоделирована комбинированная схема регулирования (каскадная система с компенсацией по расходу сырья в печи).

4. При реализации CAP на реальном объекте на качество переходного процесса влияют нелинейности ТСА, принимая во внимание эту особенность, была смоделирована CAP, учитывающая нелинейности используемых ТСА.

5. Реализован алгоритм регулирования температуры в распределенной системе управления CS-3000 фирмы Yokogawa.

5. Выбор и анализ комплекса средств автоматизации

5.1 Характеристика используемых средств автоматизации

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы