Проектирование схемы трехфазного регулируемого выпрямителя

Тиристоры VS1-VS3 образуют катодную группу вентилей, диоды VD1-VD3 – анодную.В каждый момент времени ток проводят два вентиля: из катодной группы тот тиристор, на который подан сигнал управления и у которого в данный момент времени на аноде наиболее высокое положительное напряжение относительно катода, из анодной группы пропускает тот диод, у которого на катоде относительно анода наибольшее отр

ицательное напряжение. Коммутация диодов происходит в точках естественной коммутации. Напрямер, когда проводят VS1 и VD2, к нагрузке прикладывается линейное напряжение . В т. 1 VD2 закрывается и в работу вступает VD3, т.к. на его катоде наиболее низкий потенциал, при этом к нагрузке прикладывается напряжение. При открытии VS2 VS1 закрывается.

Выпрямленное напряжение имеет троекратные пульсации за период.

Уравнение нагрузочной характеристики имеет вид:

Рассмотрим режим работы . В отличие от симметричной схемы, в нашей схеме не появляются отрицательные участки выпрямленного напряжения . При прохождении отрицательной полуволны, например, тиристор VS1 будет оставаться открытым и проводить ток вместе с диодом VD1 той же фазы. В результате на интервале нагрузка будет зашунтирована открытыми VS1 и VD1, который выполняет функцию нулевого вентиля. С целью уменьшения нагрузки на основные вентили и снижения потребляемой мощности на интервале,

включается диод VD0, который шунтирует нагрузку на интервале . Другое назначение VD0 заключается в том, что хотя очень часто защиту УВ при перегрузке по току и к.з. в нагрузке осуществляют посредством снятия импульсов управления с тиристоров в момент перегрузки, однако в рассматриваемой схеме при RL-нагрузке при снятии сигнала управления с тиристоров и отсутствии VD0 не все тиристоры закрываются, тот тиристор, который проводил ток до снятия сигнала управления, продолжает его проводить. В результате , несмотря на то, что импульсы управления не поступают. Для обеспечения запирания всех тиристоров включается VD0.

Рис. 2а. . Рис. 2б.

Рис. 2в. .

Определим коэффициенты изменения питающего напряжения

Определим (ориентировочно) активное сопротивление и индуктивность рассеяния фазы трансформатора, приведенные ко вторичной обмотке:

В нашем случае при соединении обмоток звезда-звезда, Kr=2,5, KL=10-3, S=3 и Bm=1 Тл при fc=400 Гц.

В качестве материала сердечника выбираем сталь Э330 толщиной 0,15мм, для которой ориентировочно принимаем Bm=1Тл.

Определим падение напряжения на активном сопротивлении трансформатора при минимальном и максимальном токах нагрузки:

Определим потери выпрямленного напряжения, обусловленные коммутацией, при минимальном и максимальном токе нагрузки:

Определим (ориентировочно) падение напряжения на активном сопротивлении дросселя фильтра при максимальном и минимальном значении тока нагрузки:

Максимальное среднее значение выпрямленного напряжения на входе фильтра (с учетом потерь на элементах):

- предварительное падение напряжения на тиристоре и диоде соответственно (при выборе элементов значения будут уточняться).

Минимальное фазное напряжение вторичной обмотки трансформатора при минимальном напряжении сети:

Номинальное и максимальное фазное напряжение вторичной обмотки:

Минимальное среднее значение напряжения на входе фильтра:

Максимальный угол регулирования:

Среднее значение напряжения на входе фильтра и угол регулирования в режиме, соответствующем максимальной токовой нагрузке нулевого вентиля:

Средний ток тиристоров и диодов выпрямителя в режиме максимальной токовой нагрузки:

при

при и наличии нулевого вентиля:

Действующее значение тока тиристоров и диодов в режиме максимальной нагрузки (при ):

Среднее и действующее значение тока нулевого вентиля в режиме :

Обратное напряжение на вентилях выпрямителя:

На основании данных расчета из справочника выбираем:

а) оптронные тиристоры типа ТО142-80 шестого класса с параметрами: допустимое повторяющееся напряжение , рекомендуемое рабочее напряжение , предельный ток , пороговое напряжение , динамическое сопротивление в открытом состоянии , импульсный отпирающий ток управления , импульсное отпирающее напряжение управления = 2,5 В, неотпирающий ток управления .

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2019 - www.refsru.com - рефераты, курсовые и дипломные работы