Произведение двух групп

Пусть - минимальная инвариантная в подгруппа и - силовская 2-подгруппа из , которая содержится в . Так как , то неразрешима и . Подгруппа даже простая потому, что силовские подгруппы по нечетным простым числам циклические.

Пусть вначале . Тогда и неабелева. По теореме П. Фонга из группа диэдральная или полудиэдральная. Но в этих случаях . Непосредственно проверяется, что диэдральная и полудиэдральная группа порядка 16 не является произведением двух групп порядка 4.

Предположим теперь что . Тогда - элементарная абелева подгруппа или диэдральная. Если абелева, то или группа Янко порядка 175560. Так как неабелева, то и индекс в четен. Группа разрешима, поэтому и или . Ho группа порядка 3, a . Противоречие. Если - диэдральная группа порядка 8, то - нечетное простое число или . Но группы и не допускают нужной факторизации, поэтому - собственная в подгруппа. Теперь или . Если , то - диэдральная группа порядка 16, а так как , то . Противоречие. Если , то и в существует подгруппа порядка или .

Пусть, наконец, . Тогда и . Так как фактор-группа разрешима по индукции, то и . Используя самоцентрализуемость силовской -подгруппы в , нетрудно показать, что не допускает требуемой факторизации. Теорема доказана.

Доказательство теоремы 2 . Допустим, что теорема неверна и группа - контрпример минимального порядка. Фактор-группа группы Шмидта есть либо группа Шмидта, либо циклическая -группа. Поэтому в силу индукции и теоремы 1 мы можем считать, что . Пусть - произвольная минимальная инвариантная в подгруппа. Если , то , а так как - нильпотентная группа, то разрешима по теореме Ито--Хупперта или по теореме Виландта--Кегеля. Отсюда разрешима и . Противоречие. Значит, , в частности, разрешима. Допустим, что . Тогда и удовлетворяет условиям леммы. Поэтому изоморфна подгруппе группы , содержащей для подходящего . Так как есть прямое произведение изоморфных простых неабелевых групп, то и . Отсюда . Подгруппа инвариантна в так как , то разрешима и . Теперь изоморфна некоторой группе автоморфизмов , т. е. из заключения теоремы. Противоречие. Значит, .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы