Устройства передачи информации по сети электропитания

Любая система передачи может быть описана точкой, лежащей ниже приведенной на рисунке кривой (область В). Эту кривую часто называют границей или пределом Шеннона. Для любой точки в области В можно создать такую систему связи, вероятность ошибочного приема у которой может быть настолько малой, насколько это требуется [2].

Современные системы передачи данных требуют, чтобы вероятность необнар

уженной ошибки была не выше величины 10-4…10-7 [11].

В современной цифровой технике связи наиболее распространенными являются частотная модуляция (FSK), относительная фазовая модуляция (DPSK), квадратурная фазовая модуляция (QPSK), фазовая модуляция со сдвигом (смещением), обозначаемая как O-QPSK или SQPSK, квадратурная амплитудная модуляция (QAM).

При частотной модуляции значениям «0» и «1» информационной последовательности соответствуют определенные частоты аналогового сигнала при неизменной амплитуде. Частотная модуляция весьма помехоустойчива, однако при частотной модуляции неэкономно расходуется ресурс полосы частот канала связи. Поэтому этот вид модуляции применяется в низкоскоростных протоколах, позволяющих осуществлять связь по каналам с низким отношением сигнал/шум.

При относительной фазовой модуляции в зависимости от значения информационного элемента изменяется только фаза сигнала при неизменной амплитуде и частоте. Причем каждому информационному биту ставится в соответствие не абсолютное значение фазы, а ее изменение относительно предыдущего значения.

Чаще применяется четырехфазная DPSK, или двукратная DPSK, основанная на передаче четырех сигналов, каждый из которых несет информацию о двух битах (дибите) исходной двоичной последовательности. Обычно используется два набора фаз: в зависимости от значения дибита (00, 01, 10 или 11) фаза сигнала может измениться на 0°, 90°, 180°, 270° или 45°, 135°, 225°, 315° соответственно. При этом, если число кодируемых бит более трех (8 позиций поворота фазы), резко снижается помехоустойчивость DPSK. По этой причине для высокоскоростной передачи данных DPSK не используется.

Модемы с 4-позиционной или квадратурной фазовой модуляцией используются в системах, в которых теоретическая спектральная эффективность устройств передачи BPSK (1 бит/(с·Гц)) недостаточна при имеющейся в наличии полосе частот. Различные методы демодуляции, используемые в системах BPSK, применяются также и в системах QPSK. Кроме прямого распространения методов двоичной модуляции на случай QPSK используется также 4-позиционная модуляция со сдвигом (смещением). Некоторые разновидности QPSK и BPSK приведены в табл. 5.1 [8].

При квадратурной амплитудной модуляции изменяется как фаза, так и амплитуда сигнала, что позволяет увеличить количество кодируемых бит и при этом существенно повысить помехоустойчивость. В настоящее время используются способы модуляции, в которых число кодируемых на одном бодовом интервале информационных бит, может достигать 8…9, а число позиций сигнала в сигнальном пространстве – 256…512.

Таблица 5.1 – Разновидности QPSK и BPSK

Двоичная PSK

Четырехпозиционная PSK

Краткое описание

BPSK

QPSK

Обычные когерентные BPSK и QPSK

DEBPSK

DEQPSK

Обычные когерентные BPSK и QPSK с относительным кодированием и СВН

DBSK

DQPSK

QPSK с автокорреляционной демодуляцией (нет СВН)

FBPSK

FQPSK

O-QPSK

DEOQPSK

FOQPSK

р/4-DEQPSK

BPSK или QPSK С запатентованным процессором Феера, пригодным для систем с нелинейным усилением

QPSK со сдвигом (смещением)

QPSK со сдвигом и относительным кодированием

QPSK со сдвигом и запатентованным Феером процессорами

QPSK с относительным кодированием и фазовым сдвигом на р/4

Квадратурное представление сигналов является удобным и достаточно универсальным средством их описания. Квадратурное представление заключается в выражении колебания линейной комбинацией двух ортогональных составляющих — синусоидальной и косинусоидальной:

S(t)=x(t)sin(wt+(j))+y(t)cos(wt+(j)), (5.2)

где x(t) и y(t) — биполярные дискретные величины.

Такая дискретная модуляция (манипуляция) осуществляется по двум каналам на несущих, сдвинутых на 90° друг относительно друга, т.е. находящихся в квадратуре (отсюда и название представления и метода формирования сигналов).

Поясним работу квадратурной схемы (рис. 5.2) на примере формирования сигналов QPSK.

62.jpg

Рисунок 5.2 – Схема квадратурного модулятора

Исходная последовательность двоичных символов длительностью Т при помощи регистра сдвига разделяется на нечетные импульсы Y, которые подаются в квадратурный канал (coswt), и четные — X, поступающие в синфазный канал (sinwt). Обе последовательности импульсов поступают на входы соответствующих формирователей манипулирующих импульсов, на выходах которых образуются последовательности биполярных импульсов x(t) и y(t).

Манипулирующие импульсы имеют амплитуду и длительность 2T. Импульсы x(t) и y(t) поступают на входы канальных перемножителей, на выходах которых формируются двухфазные фазомодулированные колебания. После суммирования они образуют сигнал QPSK.

Для приведенного выше выражения для описания сигнала характерна взаимная независимость многоуровневых манипулирующих импульсов x(t), y(t) в каналах, т.е. единичному уровню в одном канале может соответствовать единичный или нулевой уровень в другом канале. В результате выходной сигнал квадратурной схемы изменяется не только по фазе, но и по амплитуде. Поскольку в каждом канале осуществляется амплитудная манипуляция, этот вид модуляции называют амплитудной квадратурной модуляцией.

Пользуясь геометрической трактовкой, каждый сигнал QAM можно изобразить вектором в сигнальном пространстве.

Отмечая только концы векторов, для сигналов QAM получаем изображение в виде сигнальной точки, координаты которой определяются значениями x(t) и y(t). Совокупность сигнальных точек образует так называемое сигнальное созвездие.

На рис. 5.3 показана структурная схема модулятора, а на рис. 5.4 – сигнальное созвездие для случая, когда x(t) и y(t) принимают значения ±1, ±3 (QAM-4).

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы