Устройства передачи информации по сети электропитания

Относительное кодирование позволяет решить проблему неопределенности фазы биимпульса на приемной стороне.

4.2 Сверточные коды

Сверточный код создается прохождением передаваемой информационной последовательности через линейный сдвиговый регистр с конечным числом состояний. В общем виде, регистр сдвига состоит из К (k-битовых) ячеек и линейного преобразователя, состоящего из n функ

циональных генераторов и выполняющего алгебраические функции. Входные данные к кодеру, которые считаются двоичными, поступают вдоль регистра сдвига по k бит за раз. Число входных бит для каждой k-битовой последовательности равно n. Следовательно, кодовая скорость, определенная как RC=k/n, согласуется с определением скорости блокового кода [18]. Параметр К называется кодовым ограничением сверточного кода. Для пояснения принципа работы кодера рассмотрим сверточный кодер со скоростью кода 1/3, показанный на рис.4.2.

Считается, что первоначально все ячейки регистра сдвига находятся в нулевом состоянии. Допустим, что первый входной бит «1». Он без задержек появляется на выходе первой ячейки регистра и, соответственно, на всех трех входах выходного ключа (мультиплексора). Ключ поочередно выдает содержимое входов, и в результате выходная последовательность из трех бит будет – 111. Допустим, что второй входной бит «0». Он записывается в первую ячейку регистра, вытесняя предыдущий бит («1»), во вторую ячейку – и на входах мультиплексора появляются 001. Если третий входной бит 1, выходная последовательность 100 и т. д. Таким образом, в ответ на каждый входной бит (k=1) сверточный кодер откликается тремя битами, по числу функциональных генераторов (n=3).

Рисунок 4.2 – Сверточный кодер со скоростью кода 1/3

Имеются три альтернативных метода описания сверточного кода: древовидная диаграмма, решетчатая диаграмма и диаграмма состояний. Для приведенного выше кодера древовидная диаграмма показана на рис. 4.3.

Предположим, что кодер находится в нулевом состоянии (все нули). Диаграмма показывает, что, если первый вход 0 – выходная последовательность 000, а если первый вход 1 – выходная последовательность 111. Если в следующий момент первый вход 1, а второй 0, то второй набор выходных бит 001. Далее, если третий входной бит 0, то выходная последовательность 011, если же третий входной бит 1, то на выходе – 100.

Аналогичным способом можно описать более сложный код со скоростью 2/3, а так же недвоичные коды (если число символов в алфавите q³2k, k>1)

Рисунок 4.3 – Древовидная диаграмма для кода со скоростью 1/3

Сверточные коды относятся к помехоустойчивым кодам, поэтому они часто используются после относительных кодов, которые являются накопителями ошибок, а так же сверточное кодирование используется в системах с модуляцией, обладающей низкой помехоустойчивостью. Так, применение многопозиционной QAM в чистом виде сопряжено с проблемой недостаточной помехоустойчивости. Поэтому во всех современных высокоскоростных протоколах QAM используется совместно с решетчатым кодированием — специальным видом сверточного кодирования. В результате появился новый способ модуляции, называемый треллис-модуляцией (ТСМ). Выбранная определенным образом комбинация конкретной QAM помехоустойчивого кода в отечественной технической литературе носит название сигналъно-кодовой конструкции (СКК). СКК позволяют повысить помехозащищенность передачи информации наряду со снижением требований к отношению сигнал/шум в канале на 3—6 дБ. При этом число сигнальных точек увеличивается вдвое за счет добавления к информационным битам одного избыточного, образованного путем сверточного кодирования. Расширенный таким образом блок битов подвергается все той же QAM. В процессе демодуляции производится декодирование принятого сигнала по алгоритму Витерби [11]. Именно этот алгоритм за счет использования введенной избыточности и знания предыстории процесса приема позволяет по критерию максимального правдоподобия выбрать из сигнального пространства наиболее достоверную эталонную точку.

Выбор способов модуляции и кодирования сводится к поиску такого заполнения сигнального пространства, при котором обеспечивается высокая скорость и высокая помехоустойчивость. Комбинирование различных ансамблей многопозиционных сигналов и помехоустойчивых кодов порождает множество вариантов сигнальных конструкций. Согласованные определенным образом варианты, обеспечивающие улучшение энергетической и частотной эффективности, и являются сигнально-кодовыми конструкциями. Задача поиска наилучшей СКК является одной из наиболее сложных задач теории связи. Современные высокоскоростные протоколы модуляции (V.32, V.32bis, V.34 и др.) предполагают обязательное применение сигнально-кодовых конструкций.

Все применяемые сегодня СКК используют сверточное кодирование со скоростью n—1/n, т.е. при передаче одного сигнального элемента используется только один избыточный двоичный символ [2].

Таким образом, в системах с нестабильной помеховой обстановкой для обеспечения высокой помехоустойчивости целесообразно использовать сочетание относительного кодирования и сверточного кодирования, а в случаях применения QAM – треллис-модуляции.

5. ОБЗОР ВИДОВ МОДУЛЯЦИИ

Преобразование несущего гармонического колебания (одного или нескольких его параметров) в соответствии с законом изменения передаваемой информационной последовательности называется модуляцией. При передаче цифровых сигналов в аналоговом виде оперируют понятием – манипуляция.

Способ модуляции играет основную роль в достижении максимально возможной скорости передачи информации при заданной вероятности ошибочного приема. Предельные возможности системы передачи можно оценить с помощью известной формулы Шеннона, определяющей зависимость пропускной способности С непрерывного канала с белым гауссовским шумом от используемой полосы частот F и отношения мощностей сигнала и шума Pс/Pш .

, (5.1)

где PС — средняя мощность сигнала;

PШ — средняя мощность шума в полосе частот.

Пропускная способность определяется как верхняя граница реальной скорости передачи информации V. Приведенное выше выражение позволяет найти максимальное значение скорости передачи, которое может быть достигнуто в гауссовском канале с заданными значениями: ширины частотного диапазона, в котором осуществляется передача (DF) и отношения сигнал – шум (PС/РШ).

Вероятность ошибочного приема бита в конкретной системе передачи определяется отношением PС/РШ. Из формулы Шеннона следует, что возрастание удельной скорости передачи V/DF требует увеличения энергетических затрат (РС) на один бит. Зависимость удельной скорости передачи от отношения сигнал/шум показана на рис. 5.1.

61.jpg

Рисунок 5.1 – Зависимость удельной скорости передачи от отношения сигнал/шум

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы