Интегральное исчисление
Задание. Найти неопределенные интегралы. Результат проверить дифференцированием.
а)
Используемый прием интегрирования называется подведением под знак дифференциала. Проверим результат дифференцированием.
б)
В этом интеграле также используе
тся подведение под знак дифференциала
Проверим результат дифференцированием.
в)
Для решения этого интеграла воспользуемся формулой интегрирования "по частям". Приведем формулу интегрирования по частям:
В этом интеграле распишем составляющие следующим образом:
Продифференцируем u и проинтегрируем dv чтобы мы могли применить формулу интегрирования по частям:
Подинтегральное выражение есть неправильная рациональная дробь. Необходимо привести ее к сумме правильных рациональных дробей, выполнив деление углом числитель на знаменатель.
Вернемся к исходному интегралу:
Проверим результат дифференцированием:
г)
интеграл дифференцирование уравнение парабола
Подинтегральное выражение является неправильной рациональной дробью. Необходимо преобразовать ее в сумму правильных рациональных дробей, выполнив деление углом числитель на знаменатель:
Подинтегральное выражение представляет собой правильную рациональную дробь. Чтобы проинтегрировать её необходимо её представить в виде суммы простейших дробей. Найдем корни знаменателя
по теореме Виета
Разложим правильную рациональную дробь в сумму простейших методом неопределенных коэффициентов:
Приравнивая коэффициенты при одинаковых степенях х, составим систему линейных алгебраических уравнений для определения неизвестных коэффициентов А и В:
Решая СЛАУ находим значения коэффициентов:
Возвратимся к исходному интегралу:
Результат проверим дифференцированием:
Задание. Вычислить по формуле Ньютона-Лейбница определенный интеграл.
Перейдем к замене переменных в определенном интеграле:
Задание. Вычислить площадь фигуры, ограниченной параболой и прямой . Сделать чертеж.
Решение. Площадь области S, ограниченной снизу функцией g(x), сверху- функцией f(x), слева - вертикальной прямой , справа - вертикальной прямой равна равна определенному интегралу:
Так как мы пока не знаем, какая же из функций является большей на отрезке , построим чертеж. Точки , являются абсциссами точек пересечения графиков этих двух функций.
Как видно из построения парабола лежит выше прямой на отрезке, поэтому:
Абсциссы точек пересечения суть соответственно -6 и -1. Эти значения мы также можем получить решив в системе уравнения двух кривых
по теореме Виета имеем: , . Теперь осталось только применить формулу вычисления площади криволинейной области:
|
|
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах