Теория остатков

Свойства евклидовых колец

· В евклидовом кольце каждый идеал — главный (в частности, все евклидовы кольца нётеровы).

o Пусть I — произвольный идеал в евклидовом кольце. Если он содержит лишь 0, — он главный. В противном случае среди его ненулевых элементов найдётся элемент f с минимальной нормой (принцип минимума для натуральных чисел). Он делит все остальные элементы идеала: Есл

и g — произвольный элемент идеала I, представим его в виде g = fq + r с d(r)<d(f). Тогда r - тоже элемент идеала I и он обязан быть нулём, так как его норма меньше, чем у f. Следовательно, идеал I содержится в идеале (f). С другой стороны, всякий идеал, содержащий элемент f, содержит идеал (f). Значит, I = (f) - главный идеал.

· Каждое евклидово кольцо факториально, то есть каждый элемент представим конечным произведением простых элементов, и притом однозначно (с точностью до их перестановки и умножения на обратимые элементы). Факториальность - общее свойство всех колец главных идеалов.

· Каждое евклидово кольцо R целозамкнуто, то есть если дробь a/b,\,a,b\in R, является корнем многочлена f\in R[x]со старшим коэффициентом, равным 1, тогда a делится на b. Целозамкнутость - общее свойство всех факториальных колец.

Свойства модулей над евклидовым кольцом

Пусть R - евклидово кольцо. Тогда конечнопорождённые R-модули обладают следующими свойствами:

· Всякий подмодуль N конечнопорождённого R-модуля M конечно порождён. (следствие нётеровости кольца R)

· Ранг подмодуля N не превосходит ранга модуля M. (следствие главности идеалов в R)

· Подмодуль свободного R-модуля свободен. (то же)

· Гомоморфизм конечнопорождённых R-модулей всегда приводится к нормальной форме. То есть существуют образующие (базис, если модуль свободен) u_1, u_2, \dots, u_nмодуля N, образующие (базис) v_1, v_2, \dots, v_mмодуля M, номер k\le \min\{m,n\}и a_1,\dots,a_k- элементы кольца R, такие что ai делит ai + 1 и при i>k Aui = 0, а при остальных — Aui = aivi. При этом коэффициенты a_1,\dots,a_kопределены однозначно с точностью до умножения на обратимые элементы кольца R. (Тут прямо задействована евклидовость кольца R.)

3 Сравнения и арифметика остатков

Определение. Пусть а, b Z , m N . Говорят, что число а сравнимо с b по модулю m , если а и b при делении на m дают одинаковые остатки. Запись этого факта выглядит так:

a b(mod m) .

Очевидно, что бинарное отношение сравнимости m (неважно, по какому модулю) есть отношение эквивалентности на множестве целых чисел, а любители алгебры скажут, что это отношение является даже конгруэнцией кольца Z , фактор-кольцо по которой Z/ m называется кольцом вычетов и обозначается Z m .

Ясно, что число a сравнимо с b по модулю m тогда и только тогда, когда a-b делится на m нацело. Очевидно, это, в свою очередь, бывает тогда и только тогда, когда найдется такое целое число t , что a=b+mt . Знатоки алгебры добавят к этим эквивалентным утверждениям, что сравнимость a с b по модулю m означает, что a и b представляют один и тот же элемент в кольце Z m .

Свойство 1. Сравнения по одинаковому модулю можно почленно складывать.

Доказательство. Пусть a1b1(mod m), a2b2(mod m). Это означает, что a 1 =b 1 +mt 1 , a 2 =b 2 +mt 2 . После сложения последних двух равенств получим a 1 +a 2 =b 1 +b 2 +m(t 1 +t 2 ) , что означает a 1 +a 2 b 1 +b 2 (mod m).

Свойство 2. Слагаемое, стоящее в какой-либо части сравнения, можно переносить в другую часть, изменив его знак на обратный.

Доказательство.

Свойство 3. К любой части сравнения можно прибавить любое число, кратное модулю.

Доказательство.

Свойство 4. Сравнения по одинаковому модулю можно почленно перемножать и, следовательно,

Свойство 5. Обе части сравнения можно возвести в одну и ту же степень.

Доказательство.

Как следствие из вышеперечисленных свойств, получаем

Свойство 6. Если

a 0 b 0 (mod m) , a 1 b 1 (mod m) , ., a n b n (mod m) , x y(mod m) ,

то a 0 x n +a 1 x n-1 + .+a n b 0 y n +b 1 y n-1 + .+b n (mod m)

Свойство 7. Обе части сравнения можно разделить на их общий делитель, взаимно простой с модулем.

Доказательство. Пусть a b(mod m) , a=a 1 d , b=b 1 d . Тогда (a 1 -b 1 ) d делится на m . Поскольку d и m взаимно просты, то на m делится именно (a 1 -b 1 ) , что означает a 1 b 1 (mod m) .

Свойство 8. Обе части сравнения и его модуль можно умножить на одно и то же целое число или разделить на их общий делитель.

Доказательство.

a b(mod m) a=b+mt ak=bk+mkt ak bk(mod mk) .

Свойство 9. Если сравнение a b имеет место по нескольким разным модулям, то оно имеет место и по модулю, равному наименьшему общему кратному этих модулей.

Доказательство. Если a b(mod m 1 ) и a b(mod m 2 ) , то a-b делится на m 1 и на m 2 , значит a-b делится на наименьшее общее кратное m 1 и m 2 .

Свойство 10. Если сравнение имеет место по модулю m , то оно имеет место и по модулю d , равному любому делителю числа m .

Доказательство очевидно следует из транзитивности отношения делимости: если a b(mod m) , то a-b делится на m , значит a-b делится на d , где d|m .

Свойство 11. Если одна часть сравнения и модуль делятся на некоторое число, то и другая часть сравнения должна делиться на то же число.

Доказательство.

a b(mod m) a=b+mt .

Отношение m сравнимости по произвольному модулю m есть отношение эквивалентности на множестве целых чисел. Это отношение эквивалентности индуцирует разбиение множества целых чисел на классы эквивалентных между собой элементов, т.е. в один класс объединяются числа, дающие при делении на m одинаковые остатки. Число классов эквивалентности m (знатоки скажут - "индекс эквивалентности m ") в точности равно m .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы