Прогнозирование функций по методу наименьших квадратов
Реферат
В отчете содержится: 24 формулы, 10 рисунков.
Ключевые слова: тренд прогноза, логнормальный закон, шум, критерий χ2-Пирсона, проверка гипотез, оценки расхождения.
Целью данной работы было исследование точности прогнозирования случайного процесса с использованием метода наименьших квадратов. Для этого проводился машинный эксперимент с использованием программы Ma
thcad 14. Основой для построения случайной функции являлась линейная функция, на которую был наложен случайный шум, распределенный по логнормальному закону с параметрами М[шума]=0 (математическое ожидание шума) и D[шума]=D (дисперсия шума). После чего полученная случайная функция аппроксимировалась линейным трендом, а также исследовалось расхождение между трендом и прогнозом с последующей оценкой близости распределения расхождений наблюдений и распределения сгенерированного шума по критерию χ2-Пирсона.
Определения и формулы
Математическим ожиданием P(ξ=xi) дискретной случайной величины ξ называется сумма парных произведений всех возможных значений случайной величины на соответствующие им вероятности, т.е:
 , (1)
, (1) 
где хi – значение случайной величины, pi – вероятность этого значения, n – общее число значений.
Математическим ожиданием P(ξ=xi) непрерывной случайной величины ξ с плотностью распределения φ(x) называется число, определяемое равенством:
 , (2)
, (2) 
где φ(x) – плотность распределения случайной величины.
Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:
 (3)
 (3) 
Для непрерывной случайной величины формула (3) будет представлена в виде:
 (4)
 (4) 
Среднее квадратичное отклонение(СКО) – это статистическая величина, описывающая разброс значений изучаемой величины вокруг ее ожидаемого значения:
 (5)
 (5) 
В математической статистике оперируют оценками числовых характеристик, которые ищутся по случайной выборке. В отличие от самих параметров, оценки содержат элемент случайности. К оценкам параметров предъявляют определенные требования:
а) состоятельность – оценка, соответствующая этому требованию, с увеличением объема выборки сходится по вероятности к самому параметру;
б) несмещенность – математическое ожидание такой оценки равно оцениваемому параметру;
в) эффективность – дисперсия эффективной оценки минимальна.
Оценка математического ожидания ищется по формуле:
 , (6)
, (6) 
где n – объем случайной выборки. Оценка, вычисленная по формуле (6), называется так же статистическим средним.
Оценка дисперсии вычисляется по формуле:
 , (7)
, (7) 
где m – оценка математического ожидания случайной величины.
Оценка С.К.О. вычисляется по формуле:
 , (8)
, (8) 
т.е. корень квадратный из оценки дисперсии.
При генерации шума мы используем два закона: нормальное и логнормальное распределение.
Нормальный закон: Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности:
 (9)
(9) 
Функция распределения F(x) в рассматриваемом случае принимает вид:
 (10)
(10) 
График 1 – распределение плотности вероятности нормального закона:
 
 
Рисунок 1. Плотность вероятности нормального закона
Говорят, что случайная величина X имеет логнормальное распределение с параметрами μ, σ, если X = exp(Y), где Y имеет нормальное распределение с параметрами μ, σ. Случайная величина с логнормальным распределением является непрерывной, и принимает только положительные значения. Графики плотности (привязан к левой вертикальной оси ординат) и функции (привязан к правой оси ординат) логнормального распределения с параметрами μ = 0, σ = 0.7 приведен на следующем рисунке 2:
 
 
Рисунок 2. Логнормальное распределение
Плотность распределения логнормального закона:
 (11)
(11) 
Функция распределения:
 (12)
(12) 
Для определения степени расхождения теоретической кривой и статистических данных пользуются критериями согласия. Наиболее часто для проверки гипотезы о законе распределения используются 2 критерия: критерий λ-Колмогорова и критерий χ2-Пирсона.
Расчетное значение для критерия χ2-Пирсона вычисляется по формуле:
 , где (13)
, где (13) 
 – (14)
– (14) 
вероятность попадания в интервал разбиения с номером i, mi – число значений функции в интервале разбиения, m, σ – математическое ожидание и с.к.о. случайной величины X, Φ* – интеграл вероятностей.
Чтобы определить функциональную зависимость между величинами по результатам наблюдений, используем метод наименьших квадратов (МНК):
Пусть из опыта получены точки:
x1, y1,
xn, yn
Требуется найти уравнение прямой y=ax+b (15), наилучшим образом согласующейся с опытными точками. Пусть мы нашли такую прямую. Обозначим через δi расстояние опытной точки от этой прямой (измеренное параллельно оси y).
Из уравнения (15) следует, что:
 (16)
(16) 
Чем меньше числа по абсолютной величине, тем лучше подобрана прямая (15). В качестве характеристики точности подбора прямой (15) можно принять сумму квадратов:
 (17)
(17) 
Покажем, как можно подобрать прямую (15) так, чтобы сумма квадратов S была минимальной. Из уравнений (16) и (17) получаем:
 (18)
(18) 
Условия минимума S будут равны для линейной функции:
 (19)
 (19) 
 (20)
(20) 
Уравнения (19) и (20) можно записать в таком виде:
 (21)
 (21) 
 (22)
(22) 
По уравнениям (21) и (22) легко найти a и b по опытным значениям xi и yi. Прямая (15), определяемая уравнениями (21) и (22), называется прямой, полученной по методу наименьших квадратов (этим названием подчеркивается то, что сумма квадратов S имеет минимум). Уравнения (21) и (22), из которых определяется прямая (15), называются нормальными уравнениями.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах

 Скачать реферат
 Скачать реферат