Методы решения уравнений линейной регрессии
Задача
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн.руб.) от объема капиталовложений (Х, млн.руб.)
| Y | 31 | 23 | 38 | 47 | 46 | 49 | 20 | 32 | 46 | 24 | 
| Х | 38 | 26 | 40 | 45 | 51 | 49 | 34 | 35 | 42 | 24 | 
Требуется:
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков  ; построить график остатков.
; построить график остатков. 
3. Проверить выполнение предпосылок МНК.
4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α=0,05).
5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера (α=0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве.
6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости α=0,01 при Х=80% от его максимального значения.
7. Представить графически фактических и модельных значений Y, точки прогноза.
8. Составить уравнения нелинейной регрессии:
· Гиперболической;
· Степенной;
· Показательной.
Привести графики построенных уравнений регрессии.
9. Для указанных моделей найти коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.
Решение
1. Уравнение линейной регрессии имеет вид:
 = а0 + а1x.
= а0 + а1x. 
Построим линейную модель.
Для удобства выполнения расчетов предварительно упорядочим всю таблицу исходных данных по возрастанию факторной переменной Х (Данные => Сортировка). ( рис. 1).
 
 
Рис.1
Используем программу РЕГРЕССИЯ и найдем коэффициенты модели (рис.2)
 
 
Рис.2
Коэффициенты модели содержатся в таблице 3 (столбец Коэффициенты).
Таким образом, модель построена и ее уравнение имеет вид
Yт = 12,70755+0,721698Х.
Коэффициент регрессии b=0,721698, следовательно, при увеличении объема капиталовложений (Х) на 1 млн руб. объем выпуска продукции (Y) увеличивается в среднем на 0,721698 млн руб.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков S²e; построить график остатков.
Остатки содержатся в столбце Остатки итогов программы РЕГРЕССИЯ (таблица 4).
Программой РЕГРЕССИЯ найдены также остаточная сумма квадратов SSост=148,217 и дисперсия остатков MS=18,52712 (таблица 2).
Для построения графика остатков нужно выполнить следующие действия:
· Вызвать Матер Диаграмм, выбрать тип диаграммы Точечная (с соединенными точками).
· Для указания данных для построения диаграммы зайти во вкладку Ряд, нажать кнопку Добавить; в качестве значений Х указать исходные данные Х (таблица 1);значения Y - остатки (таблица 4).
 
 
Рис.3 График остатков
3. Проверить выполнение предпосылок МНК.
Предпосылками построения классической линейной регрессионной модели являются четыре условия, известные как условия Гаусса-Маркова.
· В уравнении линейной модели Y=a+b*X+ε слагаемое ε - случайная величина, которая выражает случайный характер результирующей переменной Y.
· Математическое ожидание случайного члена в любом наблюдении равно нулю, а дисперсия постоянна.
· Случайные члены для любых двух разных наблюдений независимы (некоррелированы).
· Распределение случайного члена является нормальными.
1) Проведем проверку случайности остаточной компоненты по критерию повторных точек.
Количество повторных точек определим по графику остатков: p=5
Вычислим критическое значение по формуле:
 .
. 
При  найдем
найдем  
 
Схема критерия:
 
 
Сравним  , следовательно, свойство случайности для ряда остатков выполняется.
, следовательно, свойство случайности для ряда остатков выполняется. 
1. Равенство нулю математического ожидания остаточной компоненты для линейной модели, коэффициенты которой определены по МНК, выполняется автоматически. С помощью функции СРЗНАЧ для ряда остатков можно проверить:  .
. 
Свойство постоянства дисперсии остаточной компоненты проверим по критерию Гольдфельда–Квандта.
В упорядоченных по возрастанию переменной X исходных данных ( ) выделим первые 4 и последние 4 уровня, средние 2 уровня не рассматриваем.
) выделим первые 4 и последние 4 уровня, средние 2 уровня не рассматриваем. 
С помощью программы РЕГРЕССИЯ построим модель по первым четырем наблюдениям (регрессия-1), для этой модели остаточная сумма квадратов  .
. 
| Дисперсионный анализ | ||||||
| df | SS | MS | F | Значимость F | ||
| Регрессия | 1 | 107,7894737 | 107,7894737 | 15,67347 | 0,15751 | |
| Остаток | 1 | 6,877192982 | 6,877192982 | |||
| Итого | 2 | 114,6666667 | 
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели

 Скачать реферат
 Скачать реферат