Роль простых чисел в математике

ВВЕДЕНИЕ

Простые числа с давних времен привлекают внимание математиков. Простые числа следует одно за другим по закону, который еще не найден. Но простые числа в математике играют важную роль. Среди натурального ряда выделяют простые числа.

В данной работе поставленная цель:

доказать, что простые числа играют большую роль в математике.

Задачи для этой рабо

ты следующие:

1. Показать способы нахождения простых чисел.

2. Назвать имена математиков, связанных с историей открытия простых чисел.

3. Составить задачи с использованием простых чисел.

РОЛЬ ПРОСТЫХ ЧИСЕЛ В МАТЕМАТИКЕ

Каждое натуральное число, больше единицы, делится по крайней мере на два числа: на 1 и на само себя. Если ни на какое другое натуральное число оно на целое не делится, то называется простым, а если у него имеются ещё какие- то целые делители, то составным. Не о всяком числе можно сразу сказать, простое оно или составное. Возьмем, например, число 1999. Если нет под рукой специальных справочных таблиц или помощника компьютера, то придется вспомнить о старом, но надежном решете Эратосфена. Старинный способ, придуманный еще в 3 в. До н. э. Эратосфеном Киренским, хранителем знаменитой Александрийской библиотеки.

Выпишем несколько подряд идущих чисел, начиная с 2. Двойку отберем в свою коллекцию, а остальные числа, кратные 2, зачеркнем. Ближайшим не зачеркнутым числом будет 3. Возьмем в коллекцию и его, а все остальные числа, кратные 3,зачеркнем. При этом окажется, что некоторые числа уже были вычеркнуты раньше, как, например, 6, 12 и другие. Следующее наименьшее не зачеркнутое число-это 5. Берем пятерку, а остальные числа, кратные 5, зачеркиваем. Повторяя эту процедуру снова и снова, мы в конце концов добьемся того, что не зачеркнутыми останутся одни лишь простые числа- они словно просеялись сквозь решето. Поэтому такой способ и получил название РЕШЕТО ЭРАТОСФЕНА. Можно ли, повторять поэту, сказать, что простых чисел столько, “ сколько звезд на небе, сколько рыб в воде”? Ответ находим в девятой книге знаменитого сочинения Евклида” Начала”- нетленного памятника Древнего мира. Двадцатая теорема в этой книге утверждает: ”Первых (простых) чисел существует больше любого указанного числа их”.

Вот доказательство этой теоремы. Предположим, что существует некое наибольшее простое число P. Тогда перемножим все простые числа, начиная с 2 и кончая P, и увеличим полученное произведение на единицу: 2 3 5 7*… P + 1 = M. Если число М составное, то оно должно иметь по крайней мере один простой делитель. Но этим делителем не может быть ни одно из простых чисел 2, 3, 5, …, Р, поскольку при делении М на каждое из них получаем в остатке 1. Следовательно, число М либо само простое, либо делится на простое число, большее Р. Значит, предположение, что существует наибольшее простое число Р, наверно и множество простых чисел бесконечно.

Не о всяком числе можно сразу сказать, простое оно или составное. Возьмем, например, число 1999. Если нет под рукой специальных справочных таблиц или помощника-компьютера, то придется вспомнить о старом, но надежном решете Эратосфена.

Первую известную нам таблицу простых чисел составил итальянский математик Пьетро Антонио Катальди в 1603 г. Она захватывала все простые числа от 2 до 743

В 1770 г. Немецкий математик Иоганн Генрих Ламберт опубликовал таблицу наименьших делителей всех чисел, не превосходящих 102000 и не делящихся на 2, 3, 5. Вложив в этот труд поистине колоссальные усилия, Ламберт гарантировал бессмертие тому, кто доведет таблицу делителей до миллиона. На его призыв откликнулись многие вычислители.

К середине 19 века уже были составлены таблицы наименьших делителей не только первого миллиона, но и следующих, в плоть до 9. В это же время в прессе появились сообщения, которые представлялись абсолютно фантастическими: в Венскую академию поступило 7 больших томов рукописных таблиц “Великий канон делителей всех чисел, которые не делятся на 2, 3 и 5, и простых чисел между ними до 100330201”. Автором этого труда был Якуб Филипп Кулик, профессор высшей математики Пражского университета.

В дальнейшем поиске простых чисел уже не носили характера массовой охоты, с которой можно сравнить составление таблиц, а превратились в целенаправленный отбор отдельных представителей. У охотников за числами больше всего популярны простые числа Марсена. Они названы в честь французского ученого Марена Марсенна, Сыгравшего в 18в. Видную роль в становлении европейской науки.

Некоторые представления о распределения простых чисел имели уже древние греки. Из доказательства Евклида следует, например, что они не собраны вместе, а разбросаны по всей числовой оси. Но как часто?

В 1845 г французский математик Жозеф Бертан, исследуя таблицу простых чисел в промежутке от 1 до 6000000, обнаружил, что между числами n и n2 – 2, где n > 3, содержится по крайней мере одно простое число. В последствии это свойство получило название постулата Бертрана, хотя самому Бертану обосновать его так и не удалось. Доказал его в 1852 г русский математик Пафнутий Львович Чебышев. Из результата Чебышева следовала и более точная оценка. Таким образом, даже среди очень больших чисел простые числа не так уж редки.

С другой стороны, существуют промежутки, включающие тысячи, миллионы, миллиарды и вообще какое угодно большое количество подряд стоящих натуральных чисел, среди которых нельзя найти ни одного простого! В самом деле, задавшись произвольным большим натуральным числом к, построим ряд чисел к! +2, к! +3,…, к! + к (здесь к! = 1*2*3*…*к). Каждое из этих чисел составное. Например, число к! + м делится на м, поскольку к! делится на м и само м делится на м.

Простые числа, делящихся только на единицу и на самих себя(2,3,5,7,11,13,17,…), с давних времен привлекают внимание математиков. Более двух тысяч лет назад великий древнегреческий математик Евклид доказал, что ряд простых чисел бесконечен. Простые числа следуют одно за другим по закону, который еще не найден. Эти числа то на долго исчезают из натурального ряда, то по являются в нем часто, а иногда и по соседству: 11,13,;5971847,5971849.

Профессор И.К. Андронов в книге <<Арифметика натуральных чисел>> приводит рассказ о воображаемом путешествии по бесконечной дороге простых чисел:<<Мысленно возьмем прямо линейный провод, выходящий из классной комнаты в мировое пространство, пробивающий земную атмосферу, уходящий туда, где Луна совершает вращение, и далее за огненный шар Солнце, в мировую бесконечность.

Мысленно подвесим на провод через каждый метр электрические лампочки, нумеруя их, начиная с ближней:1,2,3,…,1 000,…,1 000 000,…, включим ток с таким расчетом, чтобы загорелись все лампочки с простыми номерами, и полетим вблизи провода>>.

Вместе с автором этой книги мы начинаем движение с первой электрической лампочки, которая не осветила нам старта; она не горит, так как ее номер (единица) не является простым числом. Сразу за ней две лампочки с номерами 2 и 3 включены, эти числа простые . Оставим позади горящие лампочки 5 и 7. Они пронумерованы простыми числами. На нашем длинном пути очень редко будут попадаться числа-близнецы. Вот промелькнули следующие числа-близнецы: 11 и 13, 17 и 19. Мы быстро набираем скорость; оставляя позади лампочки 101 и 103, 827 и 829; теперь реже и реже встречаются освещенные островки из лампочек, пронумерованы простыми числами-близнецами. Вот на фоне темноты и мрака засверкали лампочки с номерами 10 016 957 и 10 016 959; это последняя пара известных простых чисел-близнецов. Возможно, где то в бесконечных просторах обрадуют наш взор еще пара светящихся лампочек, или такие близнецы исчезнут на всегда. Нам встречаются участки, довольно часто освещаемые лампочками, но чаще путь проходит в темноте. Из первого миллиона промелькнуло всего 78 498 горящих лампочек, 921 502 не горели.

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы