Преобразование случайных сигналов в безынерционных нелинейных и инерционных линейных цепях

Пусть N = 1000 = 7,48 mXN0 = -1,2119 XN0 = 0,7473

В дальнейшей работе будем использовать объем выработки N = 100, т. к. критерий Пирсона имеет наименьшее значение.

3. Энергети

ческий спектр случайного сигнала Wx() показывает, как средняя мощность сигнала распределена по диапазону частот. Для большинства случайных сигналов ширина спектра теоретически бесконечно велика. Для оценки реальной ширины спектра вводят понятие эффективной ширины спектр э, которую можно определить как полосу частот, в пределах которой спектральная плотность средней мощности падает не более чем в 2 раза по сравнению с максимумом.

Корреляционная функция случайного процесса Rх() является внутренней мерой связанности процесса в различные моменты времени, отстоящие на , его свойства (помнить) предшествующие состояния следует интервал корреляции – это величина временного сдвига , начиная с которого значения сигнала X(t) и X(t+) могут считаться несвязанными.

Оценку величин интервала корреляции процесса к при известной корреляционной функции Rх() можно следующим образом: если процесс широкополосный, то к равен координате первого нуля функции Rх(); если процесс узкополосный, то к определяют по координате первого нуля огибающей функции Rх(). Корреляционная функция Rх() и энергетический спектр случайного сигнала Wx() связана между собой преобразованиями Фурье. Если реализация случайного процесса X(t) задана в виде выборочной последовательности значений Xi, где i = 1,2,3, … N, то

, 0 k N1

где N1 – число отсчетов корреляционной функции и энергетического спектра (на 1  2 порядка меньше числа отсчетов сигнала N);

Т – интервал дискретизации сигнала.

 = 2Пf = - шаг отсчета по частоте.

Корреляционная функция Rх(t) и энергетический спектр Wx(f) исходного сигнала изображены на рисунках (см. ниже). Это широкополосный сигнал. Т = 0.0004с; N1 = 10;

По графику корреляции видно что исследуется широкополосный сигнал, его интервал корреляции:

Энергетическая ширина спектра

4. Найдем P(x) для равномерного закона распределения

Xmin = -2,525 Xmax = 0,042

Если во всей области изменения переменной Х связь отклика Y с воздействием Х, обусловленная видом характеристики y = f(x) нелинейного элемента, однозначна, то плотность вероятности распределения мгновенных значений P(y) по известной P(x) можно найти

где преобразованная зависимость y = f(x).

Если нелинейность такова, что какому-то значению y = y1 отвечает конечное множество значений

, , … , то

++ …

Если линейность такова, что есть значения Y, которым в силу характеристики y = f(x) отвечает бесконечное число значений Х, то применяют следующее правило

[-2,525; 0,042] [0, 3] P(x) = 0,39

У нас нелинейность вида

Y =

В результате преобразования случайного процесса X(n) в безынерционной нелинейной цепи мы получили новый сигнал Y(n).

Для него m1YN0 = 0,5132 1YN0 = 0,5323 Гистограмма изображена на рисунке, ее огибающая схожа с графиком теоретически построенной функции P(y) следовательно, теоретические расчеты совпадают с практическим преобразованием.

Корреляционная функция Ry(t) и энергетический спектр случайного сигнала Wy(f) представлены на рисунках, приведенных ниже:

Интервал корреляции:

Энергетическая ширина спектра:

В результате преобразования случайного процесса X(n) в безынерционной нелинейной цепи случайный сигнал перестал быть равномерным. Математическое ожидание увеличилось и стало больше нуля. Среднеквадратичное отклонение уменьшилось примерно в 1,5 раза. Сигнал остался широкополосным.

6. В общем случае точно установить взаимосвязь закона распределения воздействия с законом распределения отклика линейной цепи и ее частотной характеристикой очень сложно. Но если протяженность во времени импульсной характеристики цепи такова, что хотя бы в несколько раз превышает к входного случайного процесса, или полоса пропускания цепи в частотной области хотя бы в несколько раз меньше ширины энергетического спектра входного процесса, то при любом законе распределения P(х) входного процесса, случайный процесс на выходе линейной цепи будет иметь распределение, близкое к нормальному.

В результате фильтрации случайного процесса Y(n) в инерционной цепи (ПФ, f0 = 500 Гц, Q = 3) мы получили новый сигнал Z(n).

Страница:  1  2  3 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы