Механизмы имплантации в металлы и сплавы ионов азота с энергией 1-10 кэВ

Таблица 4.3 - Зависимость пробегов ионов азота от их начальной энергии в диапазоне 15 – 40 кэВ (Дж)

 

Пробег, Å

E0, кэВ

15 >

20

25

30

35

40

Фаза

           

α-Fe

436,9

511,4

582,4

643,4

704,2

768,0

Mo

357,5

413,0

474,3

512,8

564,2

600,1

V

549,1

650,8

743,9

825,1

907,3

991,1

α-W

188,9

220,6

250,0

271,3

290,8

308,7

α-Cr

470,5

559,2

637,1

703,2

771,6

841,3

α-Co

388,4

464,2

528,8

584,9

625,7

682,2

Таблица 4.4 - Страгглинги пробегов ионов азота с энергией 15 – 40 кэВ (Дж)

 

Страгглинг пробега, Å

E0, кэВ

15

20

25

30

35

40

Фаза

           

α-Fe

127,7

149,5

170,3

188,1

205,9

224,6

Mo

87,1

100,6

115,5

124,9

137,4

146,1

V

164,9

195,5

223,4

247,8

272,5

297,7

a-W

35,4

41,3

46,8

50,8

54,5

57,8

a-Cr

140,5

167,0

190,2

210,0

230,4

251,2

α-Co

111,7

133,5

152,1

168,3

180,0

196,2

Из анализа результатов расчётов, приведённых в таблицах 4.1 - 4.4 следует, что значение пробега существенно зависит от элементного состава и характеристик атомов (M2, Z2) материала подложки. Большая величина страгглингов пробегов в таблицах 4.2 и 4.4 по сравнению с пробегами в таблицах 4.1 и 4.3 объясняется тем, что для лёгких ионов азота, когда , происходит сильное рассеяние первичного пучка ионов при внедрении в материал подложки и получается большой разброс пробегов по величине.

Рисунок 4.1 – Зависимость пробегов ионов азота в различных фазах, встречающихся в сталях, в зависимости от энергии имплантации.

На рисунке 4.1 изображён график зависимости пробегов ионов азота в различных фазах в зависимости от энергии имплантации, построенный на основе данных из таблиц 4.1 - 4.4.

Значения пробегов из таблиц 4.1 – 4.4 используются для расчёта распределения ионов азота в поверхностном слое подложки после ионной имплантации. На рисунках 4.2 и 4.3 приведены графики распределения концентрации азота и распределения дефектов по глубине подложки из стали Р6М5, полученные на основе результатов расчётов с помощью разработанного программного обеспечения (приложение 1). Вычисления проводились для энергий ионов 2, 4,5 и 7 кэВ. Доза имплантации составляла 1021 м-2.

Рисунок 4.2 – График распределения внедрённой примеси в стали Р6М5 после имплантации.

Рисунок 4.3 – График распределения дефектов в стали Р6М5 после имплантации.

Анализ графиков на рисунках 4.2 и 4.3 показывает, что максимум концентрации дефектов находится приблизительно на 20 Å глубже максимума концентрации примесных атомов. Также получается, что максимальная концентрация дефектов превышает максимальную концентрацию внедрённой примеси, например, при 2 кэВ в 3,4 раза, и, с увеличением энергии, максимумы концентраций резко сближаются до почти полного совпадения при 7 кэВ. Это объясняется тем, что с увеличением начальной энергии иона уменьшается вклад ядерного торможения в общие потери энергии. Например, из (2.4) следует, что при Eкр > 1,7 кэВ для фазы α-Fe ядерные потери, которые определяют величину коэффициента kdi в (3.12), становятся пренебрежимо малыми. Таким образом для 2 кэВ большую часть общих потерь энергии составляют ядерные потери энергии, а для 7 кэВ электронные потери энергии.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы