Механизмы имплантации в металлы и сплавы ионов азота с энергией 1-10 кэВ

Рисунок 2.4 – Общий вид зависимости тормозных сечений электронного и ядерного торможения от энергии иона.

Потери энергии определяются в основном электронным торможением, если энергия налетающих частиц превышает Eкр:

, (2.4)

где 28 src="images/referats/3876/image019.png">[57], Z1 и Z2 – зарядовые числа иона и атома мишени соответственно.

Таким образом, из анализа графика на рисунке 2.4 и из условия (2.4) следует, что в диапазоне энергий 1 – 10 кэВ (Дж), при необходимо учитывать как электронные, так и ядерные потери энергии ионами азота при имплантации в металлы и сплавы, а при можно учитывать только электронные потери энергии ионом. Рассмотрим далее зависимости для расчёта этих потерь.

2.3.1 Ядерное торможение иона в материале

Если проинтегрировать энергию, передаваемую ионом атому мишени при столкновении Tn по всем возможным потерям энергии при столкновении, то получим упругие потери энергии на единицу длины пути [1, 2, 12, 21, 22, 57]:

, (2.5)

где Tmax — максимально возможная энергия, передаваемая при лобовом столкновении, Дж; dσ — дифференциальное поперечное сечение взаимодействия, м2.

Таким образом, для нахождения потерь энергии ионом при столкновении с атомами поверхностного слоя материала образца, необходимо знать энергию Tn, Tmax и сечение рассеяния dσ.

Для нахождения вышеуказанных параметров рассмотрим процесс столкновений частиц на основе классической механики. Тогда с углом рассеяния сталкивающихся частиц можно связать прицельный параметр p и классическую траекторию в процессе столкновения. Уравнения, описывающие траектории взаимодействующих частиц, значительно упрощаются, если рассматривать движение в системе центра масс (СЦМ). Рисунок 2.5 иллюстрирует положение и угловые координаты частиц при максимальном их сближении в лабораторной системе координат (ЛСК). Одна из частиц (M1) до столкновения двигалась со скоростью v, а другая (M2) – покоилась. Углы отклонения частиц после столкновения в ЛСК q1 и q2 выражаются через угол j формулами [22]:

, , (2.6)

где α – угол отклонения иона в СЦМ при столкновении, рад.

Абсолютные величины скоростей частиц после столкновения и могут быть выражены через угол α формулами [22]:

, . (2.7)

Рисунок 2.5 – Схема столкновения двух частиц в ЛСК.

- скорость иона до и после столкновения соответственно; - скорость атома после столкновения; - скорость центра масс; θ1, θ2 – углы отклонения в ЛСК после столкновения иона и атома соответственно; α - угол отклонения иона в СЦМ; p - прицельный параметр; rmin - минимальное расстояние сближения частиц.

Тогда упругие потери энергии Tn ионом при столкновении с атомом подложки в ЛСК рассчитываются согласно (2.7) по формуле:

, (2.8)

где E – энергия иона до столкновения; параметр Дж, определяет максимально возможную энергию, передаваемую при лобовом столкновении (когда частицы сближаются и удаляются по одной оси):

. (2.9)

Угол рассеяния α налетающей заряженной частицы в центральном силовом поле c потенциальной энергией U(r) наиболее удобно решать исходя из законов сохранения энергии и момента импульса :

, (2.10)

. (2.11)

где r – радиус-вектор иона, м; p - прицельный параметр, м (расстояние, на котором ион прошёл бы от атома в отсутствие силового поля); - приведенная масса, кг; и - радиальная и поперечная составляющие скорости иона соответственно.

Подставим величину из (2.11) в (2.10):

. (2.12)

Отсюда

. (2.13)

Преобразуем выражение (2.11) к виду:

, (2.14)

тогда из (2.13) и (2.14) получим

, (2.15)

и, следовательно,

. (2.16)

Рисунок 2.6 – Траектория частицы в СЦМ.

- скорость иона до и после столкновения соответственно; r – радиус-вектор иона; α - угол отклонения иона в СЦМ; p - прицельный параметр; rmin - минимальное расстояние сближения частиц.

На рисунке 2.6 показана траектория движения иона в системе центра масс. Эта траектория симметрична по отношению к прямой, проведенной в ближайшую к центру точку орбиты (см. на рисунке 2.6 прямая ОА). Углы между ОА и обеими асимптотами к траектории одинаковы. Если обозначить эти углы χ0, то видно, что угол рассеяния иона в СЦМ равен:

. (2.17)

Из (2.16) следует, что

. (2.18)

Так как из (2.10) и (2.11)

, , (2.19)

То

, (2.20)

где rmin — минимальное расстояние, на которое частица приближается к рассеивающему центру, м; v — относительная скорость сталкивающихся частиц на "бесконечном" расстоянии друг от друга, .

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы