Метод конструирования задач

Пример 3:

Задача: "Если треугольник вписан в окружность, то любая его сторона будет равна произведению двух радиусов этой окружности на синус угла, противоположного этой стороне". ("Геометрия 7-11" А.В. Погорелов)

1.3.1. В данном случае перефразировки обычно берутся не отдельные фразы или термины, а части фигур (стороны, углы, диагонали и т.д.).

Ус

ловия для перевода: сторона СВ треугольника АВС, сторона АК треугольника АВК, ÐВАС, ÐАВК, радиус и диаметр.

1.3.2. Решение этой задачи приведено в пункте 1.1.2.

1.3.3. Пусть СВ=а, АК=в, ÐВАС=a, ÐАВК=b, ВК=х, ОН (радиус)=у.

1.3.4. Конечная формулировка выглядит так: “Найти отношение а к в системе:

а= sinaх

в= sinbу, на основании теоремы синусов”. (Составлена самостоятельно).

1.3.5. Решение: по теореме синусов, а=2 Rsina , тогда выражения а= sinaх, в= sinbу будут частными случаями теоремы, в этом случае sin a =Ö3/2, sinb=1/2, а х и у - диаметр и радиус соответственно, х=2у,Þв=у, Þа=2×Ö3в/2, Þа/в=1/Ö3.

Ответ: а/в=1/Ö3.

1.4. Переход от прямого утверждения к обратному.

Некоторые задачи и теоремы имеют одну интересную особенность: они верны, если их решать от начала до конца, и если логическая цепочка выводов движется в обратном направлении, т.е. данные и искомые величины могут меняться местами.

Алгоритм составления:

1.4.1. Выявление данных и искомых величин.

1.4.2. Решение задачи или доказательство теоремы.

1.4.3. Переход данных величин в искомые и наоборот.

1.4.4. Повторное решение в обратном направлении.

1.4.5. Точная формулировка задачи.

Хочется отметить, что далеко не каждая задача имеет обратный перевод.

Пример 4:

Задача: "Если диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, то этот четырехугольник - параллелограмм" ("Геометрия 7-11" А.В. Погорелов)

1.4.1. Данное: диагонали четырехугольника пересекаются и точкой пересечения делятся пополам, искомое: параллелограмм.

1.4.2. Дано: АС^ВК, ВО=ОК, АО=ОС.

Доказать: АВСК - параллелограмм.

Доказательство:

ВО=ОК (по условию), АО=ОС (по условию), ÐВОС=ÐАОК (вертикальные), то ВОС= АОК, ÞАК= ВС, ÐОАК=ÐВСО, а т.к. это внутренние накрест лежащие, то АК½½ВС, аналогично АВ=СК и АВ½½СК,Þ АВСК - параллелограмм.

1.4.3. Данные: параллелограмм; искомые: диагонали пересекаются и точкой пересечения делятся пополам.

1.4.4. Повторное решение: АК½½ВС,ÞÐКАО=ÐВСО, ÐАКО=ÐСВО и АК=ВС, Þ АОК= СОВ и АО=ОС, а ВО=ОК.

1.4.5. Формулировка задачи: "Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам". (Составлена самостоятельно).

2. КОНСТРУКЦИЯ.

В задачах этого типа выстраивается сооружение, в качестве деталей которого берутся задачи или теоремы, но данный способ конструирования имеет и обратный переход: чаще всего сложную задачу можно разложить на более простые составляющие, что применяется для решения сложных задач и называется "Частный случай", который рассматривается в следующем пункте.

Преобразование задач одного типа в задачи другого типа – одно из простейших творческих упражнений и часто рекомендуется для самостоятельной работы.

Некоторые задачи конструируются авторами под понравившуюся идею решения. Так же можно сконструировать задачу "под ответ".

Алгоритм конструирования:

2.1. Выбор задачи, утверждений решений или результатов для создания конструкции.

2.2. Решение задач или доказательство утверждений (если задача конструируется под ответ или способ решения этот пункт можно исключить).

2.3. Выбор "деталей" для будущей конструкции (данный пункт также необходим лишь в том случае, когда используются задачи или теоремы).

2.4. Соединение или корректировка выбранных данных.

2.5. Уточнение формулировки.

2.6. Решение получившейся задачи.

Пример 5:

В качестве иллюстрации этого способа конструирования выбрана довольно редко встречающаяся задача-ловушка, которая будет сконструирована под специально подобранные данные.

2.1. В данном случае основой задачи выступает выпуклый четырехугольник с заданными сторонами, две из которых равны одному числу, а две оставшиеся - другому.

2.4. Пусть этот четырехугольник будет иметь длины сторон 6 и 10, и лежать в основании четырехугольной пирамиды, высота которой равна 7, а грани наклонены к плоскости под углом 60°.

2.5. Уточнение формулировки: "В основании четырехугольной пирамиды лежит выпуклый четырехугольник, две стороны которого равны 6 , а две оставшиеся - 10, высота пирамиды равна 7, боковые грани наклонены к плоскости под углом 60°. Найдите объем пирамиды", (ж. “Квант”).

2.6. Дано: АВ=ВС=6, АК=КС=10, h=7, угол к плоскости 60, ОАВСК - пирамида, АВСК - четырехугольник.

Найти:VАВСКО.

Решение:

Двугранные углы при основании равны или 60° или 120°(по условию, но не обязательно 60°, в чем и состоит ловушка), вершина О проектируется в точку, равноудаленную от прямых, образующих четырехугольник, Þ АВСК - не параллелограмм, значит, две соседние стороны равны 6, а две другие, также соседние, 10.

Если у четырехугольника АВСК АВ=ВС=10, АК=КС=6, то существуют две равно - удаленные от его сторон точки (О1 и О2). Расстояния от проекции вершины О до сторон пирамиды равны 7/Ö3 (следствие из условия). Если проекция вершины - точка О1 (центр вписанной в АВСК окружности), то S АВСК=16×7/Ö3, но это невозможно, т.к. SАВСК £60

(наибольшая площадь достигается, если углы ÐКАВ и ÐВСК прямые, тогда

SАВСК = 1/2d1× d2×sin(d1d2)=1/2×8×15× sin 90°=60,Þвершина О проектируется в точку О2,расстояния от которой до сторон равны 7/Ö3, тогдаSАВСК = =(10 - 6) 7/Ö3= 28/Ö3 , а VАВСКО=64/Ö3.

Ответ: VАВСКО=64/Ö3.

3. ЧАСТНЫЙ СЛУЧАЙ.

Иногда поставленная задача оказывается настолько трудной, что не поддается решению, тогда используется следующий способ: решается часть задачи или рассматривается несколько задач, аналогичных данной, что и называется использованием “частного случая”. Бывает, что преподавателю не хватает какой-то простой задачи для иллюстрации новой теоремы, тогда тоже может помочь “частный случай”.

В истории есть примеры того, что обобщенные теоремы не находят применения, а их “частные случаи” получают широкое распространение и являются одними из важнейших среди прочих теорем математики (примером подобной ситуации может послужить теорема Паппа и ее “частный случай” теорема Пифагора).

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы