Генератор серий синхроимпульсов

Введение

Работа любой ЭВМ и любого цифрового устройства сопровождается передачей данных по тракту их обработки от предыдущих функциональных блоков и узлов к последующим. Взаимодействие этих блоков и узлов во времени организуется различными способами, рассмотренными в [1]. Особо важную роль среди способов организации взаимодействия частей цифровых устройств и ЭВМ во вр

емени играет синхронизация, осуществляемая с помощью специальных устройств синхронизации (синхронизаторов), сигналы от которых распределяются по всем частям ЭВМ. Эти сигналы разрешают прием и выдачу данных, а также тактируют процесс их обработки. Существуют однофазные и многофазные системы синхронизации. Многофазная синхронизация характеризуется наличием более чем двух серий (наборов) синхроимпульсов и применяется для увеличения быстродействия тактируемых устройств. Это осуществляется с помощью разбиения периода следования синхросигналов на несколько частей и использования в отдельных блоках ЭВМ или других цифровых устройств синхросигналов более высокой, чем основная, частоты. В данном случае необходимо разработать устройство синхронизации аналогичного назначения, формирующее четыре серии синхроимпульсов в соответствии с исходным ТЗ.

1. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ УСТРОЙСТВА И ОБОСНОВАНИЕ ПРИНЯТЫХ РЕШЕНИЙ

1.1. Выбор и обоснование структурной схемы

Генератор может быть построен на основании четырехразрядного кольцевого счетчика и неполного линейного дешифратора, который можно реализовать на логических элементах, выполняющих функцию 2И.

Структурная схема генератора приведена на рис.1.1.

Рис. 1.1.Структурная схема генератора

СИ – тактовые синхроимпульсы

CT – кольцевой счетчик

DC – дешифратор

1.2. Разработка функциональных схем отдельных блоков устройства

На рис.1.2 приведена функциональная схема кольцевого счетчика, построенного на основе обычного сдвигового регистра со сдвигом вправо. В качестве разрядных триггеров использованы D – триггеры с прямым динамическим управлением. Благодаря тому, что триггеры имеют как прямой ( Q ), так и инверсный ( Q ) выход, на входе схемы дешифратора, подключенного к прямым и инверсным выходам счетчика, нет необходимости использовать дополнительные инверторы для получения парафазных кодов. Таблица состояний и временная диаграмма работы счетчика приведены соответственно в табл.1.1 и на рис.1.5.

На рис.1.3 приведена функциональная схема дешифратора, который представляет собой простой неполный линейный дешифратор. Работа дешифратора в статическом режиме полностью описывается с помощью таблицы состояний ( табл.1.1 ). Согласно этой таблице функциональная схема может быть реализована на основе следующих логических выражений:

Q1 = Q3 Ù Q2 (1)

Q2 = Q1 Ù Q0 (2)

Q3 = Q2 Ù Q3 (3)

Q4 = Q0 Ù Q1 (4)

Для реализации данных логических выражений достаточно воспользоваться четырьмя элементами, реализующих функцию 2И.

1.3 Алгоритм и временная диаграмма работы генератора и отдельных блоков

Временная диаграмма, иллюстрирующая работу как генератора в целом, так и его отдельных блоков, приведена рис. 1.3.

Таблица 1.1.

Таблица состояний счетчика

СИ

ВЫХОДЫ

Q3

Q2

Q1

Q0

0

1

2

3

4

5

6

7

8

0

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

Таблица 1.1.

Таблица состояний счетчика

ВХОДЫ

ВЫХОДЫ

Q3

Q2

Q1

Q0

Ф1

Ф2

Ф3

Ф4

0

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

Рис 1.2. Функциональная схема счетчика

Рис 1.3. Функциональная схема дешифратора

Функциональная схема задающего генератора ( G ) приведена на рис.1.4.

Рис 1.4. Функциональная схема генератора

1.4. Описание принципа действия

Так как после включения питания триггеры счетчика могут установиться в любое состояние ( ’’0’’ или ’’1’’), то перед началом работы необходимо установить все разрядные триггеры в нулевое состояние. Для этого на все входы установки в ''0'' разрядных триггеров ( R ) необходимо подать на короткое время сигнал низкого уровня, т.к. предложенные в задании триггеры имеют инверсный асинхронный вход установки в ''0''.

Длительность этого сигнала должна быть не меньше времени установки в ''0'' разрядных триггеров. Первый тактовый синхроимпульс, следующий после окончания сигнала ''сброс'', вызывает появление на выходе генератора первого фазового импульса Q1.

Работа генератора в статическом режиме полностью описывается таблицами состояний счетчика (табл. 1.1) и дешифратора (табл. 1.2). В динамическом режиме работа генератора осуществляется в соответствии с временной диаграммой, приведенной на рис. 1.5. Из этой временной диаграммы видно, что появляющийся на выходе дешифратора последовательно во времени импульсы управления с четырехфазным шаговым двигателем Ф1, Ф2, Ф3 и Ф4 соответствуют временной диаграмме задания. Период следования и длительность импульсов Ф1, Ф2, Ф3, Ф4 определяются частотой следования тактовых синхроимпульсов (СИ), поступающих от внешнего тактового генератора

Страница:  1  2  3 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы