Основные понятия космической геодезии и астрономии

\frac{d^2u}{d\theta^2} + u = - \frac{1}{\ell^2u^2}f\left(\frac{1}{u}\right).

Закон всемирного тяготения Ньютона связывает силу на единицу массы с расстоянием как

 f \left( {1 \over u} \right) = f(r)= - \, { GM \over r^2 } = - GM <p>u^2

где G — универсальная гравитационная константа и M — масса звезды.

В результате

\frac{d^2u}{d\theta^2} + u = \frac{GM}{\ell^2}.

Это дифференциальное уравнение имеет общее решение:

u = \frac{GM}{\ell^2} \left[ 1 + e\cos(\theta-\theta_0) \right] .

для произвольных констант интегрирования e и θ0.

Заменяя u на 1/r и полагая θ0 = 0, получим:

r = { 1 \over u } = \frac{ \ell^2 / GM }{ 1+ e\cos\theta}.

Мы получили уравнение конического сечения с эксцентриситетом e и началом системы координат в одном из фокусов. Таким образом, первый закон Кеплера прямо следует из закона всемирного тяготения Ньютона и второго закона Ньютона.

Второй закон Кеплера (Закон площадей)

Каждая планета движется в плоскости, проходящей через центр Солнца, причём за равные времена радиус-вектор, соединяющий Солнце и планету, заметает сектора равной площади.

Применительно к нашей Солнечной системе, с этим законом связаны два понятия: перигелий — ближайшая к Солнцу точка орбиты, и афелий — наиболее удалённая точка орбиты. Таким образом, из второго закона Кепплера следует, что планета движется вокруг Солнца неравномерно, имея в перигелии бо́льшую линейную скорость, чем в афелии.

Каждый год в начале января Земля, проходя через перигелий, движется быстрее, поэтому видимое перемещение Солнца по эклиптике к востоку также происходит быстрее, чем в среднем за год. В начале июля Земля, проходя афелий, движется медленнее, поэтому и перемещение Солнца по эклиптике замедляется. Закон площадей указывает, что сила, управляющая орбитальным движением планет, направлена к Солнцу.

По определению угловой момент \mathbf{L}точечной частицы с массой m и скоростью \mathbf{v}записывается в виде:

\mathbf{L} \ \stackrel{\mathrm{def}}{=}\ \mathbf{r} \times \mathbf{p} = \mathbf{r} \times ( m \mathbf{v} ).

где \mathbf{r}- радиус-вектор частицы а \mathbf{p} = m \mathbf{v} - импульс частицы.

По определению

\mathbf{v} = \frac{d\mathbf{r}}{dt} .

В результате мы имеем

\mathbf{L} = \mathbf{r} \times m\frac{d\mathbf{r}}{dt}.

Продифференцируем обе части уравнения по времени

\frac{d\mathbf{L}}{dt} = (\mathbf{r} \times \mathbf{F}) + \left( \frac{d\mathbf{r}}{dt} \times m\frac{d\mathbf{r}}{dt} \right)= ( \mathbf{r} \times \mathbf{F} ) + ( \mathbf{v} \times \mathbf{p} ) = 0

поскольку векторное произведение параллельных векторов равно нулю. Заметим, что F всегда параллелен r, поскольку сила радиальная, и p всегда параллелен v по определению. Таким образом можно утверждать, что |\mathbf{L}|- константа.

Третий закон Кеплера (Гармонический закон)

Квадраты периодов обращения планет вокруг Солнца относятся, как кубы больших полуосей орбит планет.

\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3},

где T1 и T2 — периоды обращения двух планет вокруг Солнца, а a1 и a2 — длины больших полуосей их орбит.

Ньютон установил, что гравитационное притяжение планеты определенной массы зависит только от расстояния до неё, а не от других свойств, таких, как состав или температура. Он показал также, что третий закон Кеплера не совсем точен — в действительности в него входит и масса планеты:

\frac{T_1^2(M+m_1)}{T_2^2(M+m_2)} = \frac{a_1^3}{a_2^3},

где M – масса Солнца, а m1 и m2 – массы планет.

Поскольку движение и масса оказались связаны, эту комбинацию гармонического закона Кеплера и закона тяготения Ньютона используют для определения массы планет и спутников, если известны их орбиты и орбитальные периоды.

Шестью элементами, определяющими гелиоцентрическую невозмущённую О. н. т. Р (рис.), являются:

наклон орбиты к плоскости эклиптики i.

Эллиптическая орбита планеты в пространстве

Может иметь любое значение от 0 до 180°; наклон считается меньшим 90°, если для наблюдателя, находящегося в северном полюсе эклиптики, движение планеты имеет прямое направление (против часовой стрелки), и большим 90° при обратном движении. Долгота узла W. Это — гелиоцентрическая долгота точки, в которой планета пересекает эклиптику, переходя из Южного полушария в Северное (восходящий узел орбиты). Долгота узла может принимать значения от 0 до 360°.Большая полуось орбиты а. Иногда вместо а в качестве элемента орбиты принимается среднее суточное движение n (дуга орбиты, проходимая телом за сутки). Эксцентриситет орбиты е. Если b – малая полуось орбиты, то е = /a. Вместо эксцентриситета иногда принимают угол эксцентриситета j, который определяется соотношением sin j = е. Расстояние перигелия от узла (или аргумента перигелия) w. Это гелиоцентрический угол между восходящим узлом орбиты и направлением на перигелий орбиты, измеряемый в плоскости орбиты в направлении движения планеты; может иметь любые значения от 0 до 360°. Вместо элемента w применяется также долгота перигелия p = W + w. Элемент времени, т. е. эпоха (дата), в которую планета находится в определённой точке орбиты. В качестве такого элемента может служить, например, момент t, в который планета проходит перигелий. Положение планеты на орбите определяется аргументом широты и, который представляет собой угловое расстояние планеты вдоль орбиты от восходящего узла, или истинной аномалией v —угловым расстоянием планеты от перигелия. Аргумент широты меняется от 0 до 360° в направлении движения планеты. Аналогичными элементами определяются орбиты комет, Луны, спутников планет, компонентов двойных звёзд, Солнца в Галактике и др. небесных тел.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы