Основные понятия космической геодезии и астрономии

Эклиптическая система координат

В этой системе основной плоскостью является плоскость эклиптики. Одной координатой при этом является эклиптическая широта β, а другой — эклиптическая долгота λ.

Эклиптической широтой β светила называется дуга круга широты от эклиптики до светила, или угол между плоскостью эклиптики и направлением на светило. Эклиптические широты отсч

итываются в пределах от 0° до +90° к северному полюсу эклиптики и от 0° до -90° к южному полюсу эклиптики.

Эклиптической долготой λ светила называется дуга эклиптики от точки весеннего равноденствия до круга широты светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга широты светила. Эклиптические долготы отсчитываются в сторону видимого годового движения Солнца по эклиптике, то есть к востоку от точки весеннего равноденствия в пределах от 0° до 360°.

Галактическая система координат

В этой системе основной плоскостью является плоскость нашей Галактики. Одной координатой при этом является галактическая широта b, а другой — галактическая долгота l.

Галактической широтой b светила называется дуга круга галактической широты от эклиптики до светила, или угол между плоскостью галактического экватора и направлением на светило. Галактические широты отсчитываются в пределах от 0° до +90° к северному галактическому полюсу и от 0° до -90° к южному галактическому полюсу.

Галактической долготой l светила называется дуга галактического экватора от точки начала отсчёта C до круга галактической широты светила, или угол между направлением на точку начала отсчёта C и плоскостью круга галактической широты светила. Галактические долготы отсчитываются против часовой стрелки, если смотреть с северного галактического полюса, то есть к востоку от точки начала отсчёта C в пределах от 0° до 360°.

Точка начала отсчёта C находится вблизи направления на галактический центр, но не совпадает с ним, поскольку последний, вследствие небольшой приподнятости Солнечной системы над плоскостью галактического диска, лежит примерно на 1° к югу от галактического экватора. Точку начала отсчёта C выбирают таким образом, чтобы точка пересечения галактического и небесного экваторов с прямым восхождением 280° имела галактическую долготу 32,93192° (на эпоху 2000).

Координаты точки начала отсчёта C на эпоху 2000 в экваториальной системе координат составляют:

 \alpha_{2000}^C = 17^h 45^m,6

 \delta_{2000}^C = -28^{\circ}56',2

Изменения координат при вращении небесной сферы

Высота h, зенитное расстояние z, азимут A и часовой угол t светил постоянно изменяются вследствие вращения небесной сферы, так как отсчитываются от точек, не связанных с этим вращением. Склонение δ, полярное расстояние p и прямое восхождение α светил при вращении небесной сферы не изменяются, но они могут меняться из-за движений светил, не связанных с суточным вращением.

История и применение

Небесные координаты употреблялись уже в глубокой древности. Описание некоторых систем содержится в трудах древнегреческого геометра Евклида (около 300 до н. э.). Опубликованный в «Альмагесте» Птолемея звёздный каталог Гиппарха содержит положения 1022 звёзд в эклиптической системе небесных координат.

Наблюдения изменений небесных координат привели к величайшим открытиям в астрономии, которые имеют огромное значение для познания Вселенной. К ним относятся явления прецессии, нутации, аберрации, параллакса, собственных движений звёзд и другие. Небесные координаты позволяют решать задачу измерения времени, определять географические координаты различных мест земной поверхности. Широкое применение находят небесные координаты при составлении различных звёздных каталогов, при изучении истинных движений небесных тел — как естественных, так и искусственных — в небесной механике и астродинамике и при изучении пространственного распределения звёзд в проблемах звёздной астрономии.

ТЕОРИИ ДВИЖЕНИЯ НЕБЕСНЫХ ТЕЛ

Решаемые Теорией движения небесных тел задачи разделяются на две большие группы:

I. Разработка общих вопросов движения небесных тел в гравитационном поле, так называемая задача n тел, частными случаями которой являются задача трёх тел (в астрономии, задача о движении трёх тел, взаимно притягивающихся по закону тяготения Ньютона и рассматриваемых как материальные точки) и задача двух тел.

Классический пример трёх тел задачи — система Солнце, Земля, Луна. В 1912г. финский астроном К.Ф. Сундман нашёл общее решение этой задачи в виде рядов, сходящихся для любого момента времени t. Однако ряды Сундмана оказались совершенно бесполезными для практических вычислений вследствие их крайне медленной сходимости. При некоторых специальных начальных условиях можно получить очень простые решения задачи трёх тел (решения Лагранжа), представляющие большой интерес для астрономии. Это точки либрации (положения относительного равновесия в задаче небесной механики о движении тела малой массы в силовом поле, не зависящем от времени во вращающейся системе координат), в которых тело малой массы может находиться в состоянии относительного равновесия по отношению к двум др. небесным телам (так называемая, ограниченная задача трёх тел). Для системы двух тел (рассматриваемых как точечные притягивающие массы) существуют три коллинеарные точки либрации, лежащие на прямой, проходящей через эти тела, и две треугольные точки либрации, расположенные таким образом, что два тела и точки либрации образуют равносторонние треугольники.

В коллинеарных точках либрации тела находятся в неустойчивом равновесии. Для астродинамики представляют интерес точки либрации систем Земля — Луна и Солнце — Земля.

Частным случаем трёх тел задачи является так называемая ограниченная задача трёх тел, в которой два тела конечной массы движутся вокруг центра инерции по эллиптическим орбитам, а третье тело имеет бесконечно малую массу. Для ограниченной задачи удалось исследовать разнообразные классы периодических движений. Для общего случая задачи трёх тел подробно изучены предельные свойства движения при t ® +Ґ и t ® —Ґ, то есть так называемые финальные движения.

В задаче двух тел, притягивающиеся тела принимаются за материальные точки, что справедливо, если они имеют сферическую структуру или если расстояния между ними весьма велики сравнительно с их размерами. Это условие в значительной мере выполняется для Солнца и каждой из планет. При решении задачи двух тел обычно рассматривают движение одного тела относительно другого. Движение в этой задаче происходит по коническим сечениям — окружности, эллипсу, параболе, гиперболе, прямой, — согласно законам Кеплера. Задача двух тел, описывающая т. н. невозмущённое движение, является первым приближением при изучении истинных движений небесных тел.

Так как общее математическое решение задачи n тел имеет очень сложный характер и не может быть использовано в конкретных вопросах, в небесной механике рассматриваются отдельные частные задачи, решение которых основывается на тех или иных особенностях Солнечной системы. Так, в первом приближении, движение планеты или кометы можно рассматривать как происходящее в поле тяготения одного только Солнца. В этом случае уравнения движения допускают решение в конечном виде (задача двух тел). Дифференциальные уравнения движения системы больших планет решаются с помощью разложения в математические рады (аналитические методы) или путём численного интегрирования. Теория движения спутников во многих отношениях аналогична теории движения больших планет, однако, она имеет важную особенность: масса планеты, являющаяся в этом случае центральным телом, значительно меньше массы Солнца, вследствие чего его притяжение существенно возмущает движения спутников.

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы