Открытия, положившие начало науке о Вселенной

Отрицательное давление — не вполне обычное явление в физике. При «нормальных условиях» давление в «нормальной» жидкости или газе, как правило, положительно. Но и в жидкости и в твердых телах отрицательное давление тоже может возникать.

Это требует особых, специальных условий, но само по себе не является чем-то особенно экзотическим. Однако в случае вакуума ситуация исключительная. Связь меж

ду давлением и плотностью, т. е. уравнение состояния этой «среды», имеет вид:

ρv = -с2ρv

Ничего подобного нет ни в одной другой среде. Это абсолютно и исключительно свойство одного вакуума и только его.

Это уравнение состояния совместимо с определением вакуума как формы энергии с всюду и всегда постоянной плотностью, независимо от системы отсчета. Из этого уравнения состояния и вытекает антитяготение вакуума.

Согласно общей теории относительности, тяготение создается не только плотностью среды, но и ее давлением в комбинации:

ρ + 3p/c2

Эта формула из фридмановской космологии однородной и изотропной Вселенной. Вакуум вызывает антигравитацию именно потому, что его эффективная гравитирующая энергия,

ρ0 = ρv + 3pv/c2 = -2pv ,

отрицательна при положительной плотности.

По наблюдательным данным о сверхновых плотность вакуума превышает суммарную плотность всех остальных видов космической энергии. Но это означает, что в наблюдаемой Вселенной антитяготение сильнее тяготения. При таком условии космологическое расширение обязано происходить с ускорением. Это ускорение и было замечено и реально измерено по наблюдениям сверхновых звезд в далеких галактиках.

Посмотрим еще раз на рис. 2.1, который отображает зависимость блеска сверхновых от красного смещения, и обратим внимание на одну наблюдательную точку в самом верху графика — она явно сползает вниз с верхней кривой.

Это далеко не случайное обстоятельство. Дело в том, что красное смещение служит не только мерой расстояния, но и мерой времени: чем больше z, тем больше расстояние, но, значит, тем дольше шелк нам свет от звезды. Мы видим звезду или галактику такой, какой она была в момент испускания света.

При красном смешении z = 0,7 мы видим звезды, галактики и всю Вселенную какими они были 6—8 миллиардов лет назад. Но, как мы теперь знаем, приблизительно в эту эпоху замедляющееся расширение превратилось в ускоряющееся. Красным смещениям, превышающим 0,7, отвечает ранняя эпоха, когда расширение замедлялось. Поэтому можно предсказать, что на больших z наблюдательные точки будут ложиться не на верхнюю, а на нижнюю кривую.

2.2 Ускоренное расширение

Рисунок 2.2 – Расширяющийся шар на фоне антигравитирующего вакуума.

В отличие от всемирного тяготения, всемирное антитяготение стремится не сблизить тела, а, напротив, удалить их друг от друга. Но и наблюдаемые скорости разбегания галактик тоже

приводят к их удалению друг от друга.

Это означает, что сила антитяготения направлена вдоль скорости, и потому она помогает галактикам разбегаться, все время увеличивая их скорость.

Раз наблюдаемое расширение происходит с ускорением, оно будет продолжаться неограниченно долго — ничто уже не способно этому помешать. Действительно, средняя плотность вещества и излучения будет при расширении только убывать. Но это означает, что тяготение никогда уже не будет преобладать во Вселенной. Динамическое доминирование вакуума будет только усиливаться, а разбегание галактик будет происходить все быстрее и быстрее. Очень важно, что это заключение относится ко всем трем вариантам геометрии трехмерного пространства. Трехмерное пространство может иметь положительную, нулевую или отрицательную кривизну, а расширение все равно будет продолжаться вечно.

Так вакуум с его антитяготением меняет прежнее предсказание теории о судьбе мира. В космологических моделях с нулевой энергией вакуума был возможен вариант смены расширения сжатием: при положительной кривизне пространства. Теперь такое предсказание уже отпадает. Только неограниченное расширение — таково новое предсказание теории, ставшее возможным с открытием космического вакуума.

При полном и подавляющем преобладании вакуума расстояния между галактиками и их системами возрастают со временем экспоненциально:

R(t) ~ exp(ct/A).

Здесь константа А размерности длины определяется плотностью вакуума:

A = (kρv )-1/2 ~ 1028 см.

Эта зависимость расстояний от времени содержится в теории Фридмана в качестве предельного случая, когда все в мире определяет вакуум, а влиянием невакуумных компонент космической среды можно полностью пренебречь. Закон экспоненциального расширения показан графически на рис. 2.3.

Рисунок 2.3 – Изменение расстояний в реальном мире.

По свойству экспоненциальной функции, в таком экспоненциально расширяющемся мире скорость взаимного разбе-гания тел пропорциональна расстоянию между ними.

Но тогда в законе Хаббла V = HR, постоянная Н будет независимой не только от направлений и расстояний в пространстве, но также и от времени:

Н = с/А.

Космологической длине А отвечает время А/с ~ 10 млрд. лет. Близость по порядку величины к современному возрасту мира — не случайное совпадение.

Обратимся теперь не к будущему, а к прошлому Вселенной. Вакуум доминировал в мире не всегда. Его плотность не меняется со временем, тогда как плотность темного вещества падает при расширении мира и, значит, растет назад — в прошлое. Плотность вещества меняется обратно пропорционально квадрату возраста мира. Все это означает, что антитяготение вакуума было несущественно в достаточно отдаленном прошлом.

В ранней Вселенной безраздельно господствовало всемирное тяготение невакуумных компонент космической среды. А эпоха антитяготения наступила только при возрасте мира в 6-8 миллиардов лет: в этот момент плотность темного вещества упала до значения плотности вакуума (см. рис. 2.4).

Рисунок 2.4 – Вещество и вакуум в расширяющемся мире.

Но тогда точные измерения космологического расширения по сверхновым должны прямо на это указать, — если только удастся найти сверхновые, находящиеся от нас на расстоянии в 6—8 и более миллиардов световых лет. Такие примеры очень далеких сверхновых в самое последнее время найдены, и они определенно подтверждают; что в далеком прошлом расширение действительно происходило не с ускорением, а с замедлением — по закону R ~ t2/3 . Это закон замедляющегося расширения — оно тормозится тяготением и потому происходит медленнее, чем по инерции.

Скорость расширения в этом случае V ~ R/t , при этом постоянная Хаббла H ~ 1/t .

В реальном мире этот закон расширения справедлив с очень хорошей точностью для всех трех типов пространственной геометрии, если возраст мира не превышает 6—8 миллиардов лет.

Это эпоха доминирования темного вещества. А вскоре после того, как плотность темного вещества становится меньше плотности вакуума, справедлив экспоненциальный закон расширения.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы