Открытия, положившие начало науке о Вселенной

Работа Эйнштейна 1917 года была первой попыткой применить общую теорию относительности к космологии. Но эту теорию нужно было сначала создать. Как Ньютон изобрел механику вместе с теорией тяготения для описания динамики Солнечной системы, так Эйнштейн изобрел общую теорию относительности для описания всей Вселенной (и не только для этого). Теория Эйнштейна — прямое продолжение, развитие и обобщ

ение теории Ньютона. В общей теории относительности ньютоновская механика и теория тяготения содержатся в качестве частного или предельного случая — это случай малых скоростей движения и слабых полей тяготения. В общем случае в теории Эйнштейна таких ограничений нет и именно поэтому она пригодна для описания всего мира как целого.

К немалому удивлению ее автора, общая теория относительности воспротивилась попытке вывести из нее вечность и неизменность мира. Теория не позволяла Вселенной быть статической. Все, о чем мы читаем в замечательной статье Эйнштейна, говорит о том, что он был немало удивлен и озадачен этим обстоятельством. Ситуация, однако, требовала решения. Возникала альтернатива: либо изменить взгляды и исходную установку, либо что-то радикально изменить в структуре новорожденной теории.

Эйнштейн избрал второй путь.

В только что (1915 г.) созданную общую теорию относительности ее автор внес нечто совершенно новое – космологическую константу Λ. Так в уравнениях теории появилась новая постоянная величина, о которой до того ничего не было известно ни в фундаментальной физике, ни тем более в астрономии.

Стоит заметить, что в исходном своем виде уравнения содержали только одну константу — эйнштейновскую гравитационную постоянную, κ = 8πG/c4 ,которая гтредставляет собой комбинацию постоянной тяготения Ньютона G и «скорости света в вакууме» с.

Здесь сразу же нужно сказать, что понимается в физике под словом вакуум, когда говорят о «скорости света в вакууме».

В этом случае вакуум это пустота в полном изначальном смысле этого слова. Точнее, это пустота как ее трактует специальная теория относительности. Это не только отсутствие какой-либо среды или частиц, но еще и отсутствие сильных полей тяготения. В лишенном частиц и полей пространстве свет распространяется с постоянной скоростью и эта скорость есть универсальная постоянная с = 3·1010 см/сек.

Но вакуум Эйнштейна, о котором мы будем далее подробно говорить, — совсем не пустота, у него есть энергия, у него даже есть давление. Свет распространяется в таком не пустом вакууме совсем не обязательно со скоростью с.

Возвращаясь к работе Эйнштейна, подчеркнем весьма высокий, с теоретической точки зрения, статус космологической постоянной Λ — она появляется в модифицированной теории наравне с постоянной κ. Других постоянных в уравнениях общей теории относительности нет. И эти две константы выступают как универсальные фундаментальные постоянные природы.

Дополненные космологической постоянной, уравнения обшей теории относительности (или уравнения гравитационного поля, как их называет Эйнштейн) уже допускают статическое устройство Вселенной. Теперь возможность неизменного мира может быть теоретически доказана.

Мир Эйнштейна, данный в его первой космологической работе, — это вечная Вселенная в покое и без развития. Ее трехмерное пространство неэвклидово и подобно сфере. Такое трехмерное пространство называется гиперсферой. Эйнштейн считая, что это пространство должно иметь конечный объем и быть замкнутым в себе.

Двумерный аналог такого замкнутого, но безграничного пространства — сферическая поверхность, рассматриваемая целиком: ее площадь конечна, а сама она не имеет двумерных границ. Сфере и гиперсфере приписывается положительная кривизна.

В пространстве эйнштейновской Вселенной, как и на сфере, все точки равноправны и ни одна из них не является ни центральной, ни граничной. Такая Вселенная идеально симметрична во времени и пространстве.

Это была первая космологическая модель в новейшей науке о Вселенной. Первая, но далеко еще не окончательная.

Было найдено точное решение уравнений обшей теории относительности для космологической проблемы. Решение определенно доказывало возможность статического мира.

Открытие космологического расширения в наблюдениях Хаббла (1929 г.) принесло Эйнштейну, судя по всему, немалое разочарование. Оказалось, что дорогая ему идея статичности мира неверна. Статичность в мире звезд иллюзорна. А в мире галактик никакой статичности нет — галактики удаляются друг от друга и притом с немалыми скоростями. Модель вечной Вселенной приходится при таких обстоятельствах оставить.

Но опровергнуть или доказать существование космологической постоянной можно было только опытным путем.

И эксперимент, астрономические наблюдения вынесли окончательное решение в пользу Эйнштейна, в пользу гипотезы космологической постоянной.

Более того, не только космологическая константа, но сама исходная идея статической Вселенной неожиданно обрела в наши дни новый вид и новую жизнь и притом благодаря тем же астрономическим наблюдениям. Но поразительней всего, пожалуй, то, что традиционная идея статичности мира находится в замечательном согласии с феноменом космологического расширения.

1.3 Теория Фридмана

О космологическом расширении первым сказал Фридман. В 1922 г., через пять лет после первой космологической работы Эйнштейна и за семь лет до открытия Хаббла, Фридман обратятся к модифицированным уравнениям общей теории относительности и доказал, что они богаче, чем об этом можно было судить по космологической модели Эйнштейна. Они допускают не только статический мир, но и мир, способный расширяться как целое или сжиматься.

Фридман предложил два типа Вселенной: 1) стационарный тип - кривизна пространства не меняется с течением времени и 2) переменный тип — кривизна пространства меняется с течением времени. Иллюстрацией первого типа Вселенной может служить шар, радиус которого не меняется с течением времени; двумерная поверхность этого шара будет как раз двумерным пространством постоянной кривизны. Наоборот, второй тип Вселенной может быть изображен меняющимся все время шаром, то раздувающимся, то уменьшающимся, то есть уменьшающим свой радиус и как бы сжимающимся.

Переменный тип Вселенной представляет большое разнообразие случаев. Для этого типа возможны случаи, когда радиус кривизны мира . постоянно возрастает с течением времени. Возможны далее случаи, когда радиус кривизны меняется периодически: Вселенная сжимается в точку (в ничто), затем снова из точки доводит радиус свой до некоторого значения, далее опять, уменьшая радиус своей кривизны, обращается в точку и т.д.

Во второй работе Фридман делает следующий шаг в развитии своей теории — он вводит в космологию новое трехмерное искривленное пространство, которое имеет иную, чем гиперсфера, геометрию — геометрию Лобачевского. Кривизне такого пространства принято приписывать знак «минус». Двумерным аналогом для него является гиперболоид или седловидная поверхность.

Спустя 8 лет, в 1932 г., Эйнштейн и де Ситтер, развивая фридмановскую космологию, дополнили ее рассмотрением расширяющегося мира с плоским, эвклидовым трехмерным пространством. Этими тремя вариантами и исчерпывается полный набор теоретических возможностей для пространственно-однородного мира.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы