Открытия, положившие начало науке о Вселенной

Между прочим, в одной из своих многочисленных научно-популярных статей Гамов написал (в 1950 г.), что температура фонового излучения должна быть около трех градусов — это середина (логарифмическая) расчетного интервала температур. Гамов угадал — так и оказалось.

Удивительный космический феномен — остаточное излучение ранней горячей Вселенной — получил, по предложению Шкловского, название ре

ликтового излучения. В англоязычной литературе чаще говорят «космическое микроволновое фоновое излучение».

Открытие реликтового излучения было подтверждением не только обшей концепции эволюции мира, созданной Фридманом. Динамика и геометрия мира, описываемые теорией Фридмана, вместе с термодинамикой и ядерной физикой космической среды, разработанными Гамовым, составляют главное содержание современной науки о Вселенной.

Изучение реликтового излучения показало, что оно заполняет пространство равномерно, и эта равномерность почти идеальна. Из-за своей почти идеально однородной плотности, реликтовое излучение приходит к нам равномерно из всех направлений, т. е. оно изотропно. Степень изотропии исключительно высока: относительные отклонения от нее не превышают сотых долей процента. Это рекордно высокая точность для космологии. Ее стоит сравнить с точностью, с которой измерена равномерность распределения галактик, однородность плотности светящегося вещества Вселенной; точность по галактикам составляет примерно тридцать процентов.

Так что однородность и изотропия реликтового излучения — это самое весомое наблюдательное подтверждение высокой пространственной симметрии модели Фридмана.

Вскоре после, его открытия, а особенно в самые последние годы, реликтовое излучение превратилось, можно сказать, из объекта исследования в инструмент исследования мира. Из наблюдений этого излучения удалось определить движение Земли относительно этого фона. Это стало возможно опять-таки благодаря эффекту Доплера. Если радиоантенна, или радиометр, как предпочитают сейчас говорить радиоастрономы, движется относительно реликтового фона, то встречные реликтовые фотоны будут иметь чуть меньшую длину волны, чем в случае, когда радиометр покоится относительно фона. Точно так же догоняющие радиометр фотоны будут иметь несколько большую длину волны. Измеряя эти два сдвига или любой из них, можно определить скорость радиометра относительно реликтового фона.

Так что для движущегося наблюдателя реликтовое излучение уже не выглядит строго изотропным. При этом возникает сдвиг длин волн в направлении вперед—назад, который называют дипольной анизотропией излучения.

Дипольная анизотропия реликтового фона была реально обнаружена с помощью радиометров, вынесенных за пределы земной атмосферы (чтобы она не мешала наблюдениям) на высотных самолетах и аэростатах. Оказалось, что в направлении на созвездие Льва имеется сдвиг в сторону более коротких волн, а в противоположном направлении — в сторону длинных. Разница составляла приблизительно две десятых процента, и, пересчитав ее на скорость по эффекту Доплера, наблюдатели нашли, что скорость Земли относительно реликтового фона составляет приблизительно триста километров в секунду. Это одна тысячная скорости света, т. е. одна десятая процента от нее; так и должно быть, ибо относительный сдвиг длины волны равен — в каждом из обоих направлений — отношению скорости движения к скорости света Земля движется в направлении на созвездие Льва со скоростью приблизительно в 300 км/сек относительно реликтового фона.

Этот фон служит идеально устроенной и очень удобной системой отсчета для измерения движений различных тел в космологии.

2 ВСЕМИРНОЕ АНТИТЯГОТЕНИЕ

2.1 Гипотеза Эйнштейна

С конца 1920-х годов гипотеза эйнштейновской космологической постоянной сошла, казалось, со сцены. Действительно, раз мир не статичен и расширяется, в ней уже просто нет нужды. Так считал Эйнштейн, так думали и другие теоретики.

И, тем не менее, интерес к гипотезе Эйнштейна не пропадал совсем. Десятилетие за десятилетием, начиная с работ В. де Ситгера и Ж. Леметра, складывалось понимание того, что же, в сущности, стоит за этой новой константой природы.

Постепенно стало ясно, что в своей первой космологической работе Эйнштейн предложил гипотезу о том, что наряду с обычным веществом, все частицы которого — протоны, электроны, нейтроны и т. д. — испытывают взаимное притяжение, в мире существует и совсем необычная среда, создающая не притяжение, а антипритяжение, отталкивание. Эта неизвестная до того — ни в теории, ни в эксперименте — среда действует на обычное вещество Вселенной и способна уменьшить или даже вовсе компенсировать взаимное притяжение его частиц, а то и пересилить его.

Антигравитируюшая среда представлена в модифицированных уравнениях всего одной константой - эйнштейновской космологической постоянной Λ. Величина космологической постоянной не выводится из какой-либо фундаментальной теории, а подлежит наблюдательному определению. В модели Эйнштейна ее значение должно быть таким, чтобы обеспечить точную компенсацию тяготения антитяготением.

Если такая компенсация имеет место, то сумма сил, приложенных к каждой частице космического вещества, оказывается равной нулю, и потому все частицы в мире могут находиться в покое. Если все частицы покоятся, Вселенная как целое, тоже лишена движения — она неподвижна и статична, она не меняется со временем. Именно это состояние баланса сил и описывается, по сути, космологией Эйнштейна.

Так из, казалось бы, вынужденного предположения о новой постоянной природы родилась грандиозная гипотеза всемирного антитяготения.

Ни в первой своей космологической работе, ни позднее Эйнштейн не говорит об ангитяготении, вакууме, темной энергии и т. п. Но дело не в словах и названиях. Он вообще воздерживается от какой-либо физической интерпретации космологической постоянной. У него не говорится и о компенсации тяготения космического вещества за счет физического эффекта, описываемого этой постоянной.

Сейчас считается, что космологическая постоянная представляет собой количественную характеристику космического вакуума. Такая точка зрения была впервые высказана Э. Б. Глинером в 1965 г. Космический вакуум — это такое состояние космической среды, которое обладает постоянной во времени и всюду одинаковой в пространстве плотностью — и притом в любой системе отсчета. По этим свойствам вакуум принципиально отличается от всех других, обычных форм космической среды, плотность которых неоднородна в пространстве, падает со временем в ходе космологического расширения и может быть разной в разных системах отсчета.

Если оставить в стороне представление о статичности Вселенной, то гипотеза Эйнштейна была в действительности предположением о существовании в мире космического вакуума. И это предположение, наконец, подтвердилось в астрономических наблюдениях.

В 1998—99 гг. две группы астрономов открыли всемирное антитяготение и космический вакуум. В работе участвовало большое число астрономов), одной группой руководили Брайан Смидт и Адам Ранее, другой — Сол Перлмуттер.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Астрономия, авиация и космонавтика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы