Как возникает нервный импульс

Проницаемость для натрия, напротив, увеличивается очень быстро, но затем быстро падает до некоторого нового уровня; этот новый уровень тем меньше, чем сильнее деполяризация: при деполяризации порядка 30 мВ и выше он становится практически равным нулю. Как видно из рис. 20, б, максимум, достигаемый натриевой проводимостью, и скорость ее нарастания также зависят от величины сдвига МП: чем больше

деполяризация, тем больше максимум и, как в случае калину имеется предельный уровень.

Уже эти данные, описанные нами в таком чисто качественном виде, позволяют в общих чертах объяснить механизм возбуждения – возникновения ПД.

Потенциал действия возникает, когда в результате какого-то воздействия мембрана нервного или мышечного волокна деполяризуется до некоторого уровня, например до потенциала-50 мВ. От этого сразу же возрастает проницаемость мембраны для натрия. Ионы натрия начинают входить внутрь волокна по градиенту концентрации. Это вызывает дальнейшую деполяризацию мембраны. От этого еще больше повышается натриевая проницаемость и т.д. Возникает лавинообразный про+* цесс, в результате которого мембрана перезаряжается'. Эти процессы длятся доли миллисекунды и обусловливают резкий подъем ПД. Затем натриевая проницаемость начинает уменьшаться и, кроме того, становится заметным повышение калиевой проницаемости; в результате поток ионов калия, идущих наружу, становится больше, чем направленный внутрь поток ионов натрия, и МП возвращается к исходному уровню.

Однако такое объяснение ПД не только слишком общее и схематичное, но, главное, в некотором смысле оно недостаточно законно. Хотя фиксация потенциала – это вещь великолепная, но именно в ней скрывается подвох: ведь на самом деле при возбуждении реального нерва проницаемость никогда не меняется так, как показано на рис. 20, потому что при возбуждении потенциал никогда не остается постоянным, никогда не «фиксируется», так что при описании реального процесса на самом деле нельзя следить за одной кривой, а надо мысленно «перескакивать» с одной кривой на другую.

Кроме того, на самом деле проницаемость является функцией не двух переменных – потенциала и времени, а трех: потенциала, времени и начальных условий, например начального значения потенциала, определяющего состояние мембраны в момент раздражения. Приведенный на рис. 20 набор кривых описывает только случай, когда начальное значение МП было равно ПП, т.е. –80 мВ. Если же исходно, в момент раздражения, потенциал на мембране установлен на другом уровне, то и начальные значения калиевой и натриевой проницаемости, и их изменения будут совсем другими.

Именно поэтому, если бы мы хотели1 например1 решить графически задачу расчета изменения проницаемости при переменном, а не при фиксированном потенциале, то нам пришлось бы перескакивать не только с одной кривой на другую, но и с одного семейства графиков на другое.

Модель Ходжкина – Хаксли

Как ни наглядны графики, но по ним не всегда можно находить с достаточной точностью требуемые величины, поэтому при многократном применении графиков может накопиться большая ошибка; в этом отношении, как вы знаете, гораздо удобнее использовать формулы или уравнения. Поэтому Ходжкин и Хаксли постарались описать полученную ими экспериментальную картину математически.

Вы, вероятно, знаете, что кроме методов построения графиков функций по их формулам существуют и методы решения обратной задачи – по графику найти аналитическое выражение для функции, изображаемой этим графиком. Дело облегчается, если известен вид функции; например, известно, что это линейная зависимость. Одни кривые удобно приближать многочленом, другие – тригонометрическими функциями. Удачный подбор приближающих функций иногда помогает выяснить существо изучаемого явления. Например, представив запись вибрации станка в виде суммы синусоидальных кривых, можно выяснить основные причины вибрации.

Ходжкину и Хаксли удалось описать изменение калиевой проницаемости при сдвиге потенциала на мембране с помощью дифференциального уравнения Непрерывные кривые на рис. 20 – решения этого уравнения, а кружочки – результаты экспериментов с фиксацией потенциала, Ясно, что кривая изменения натриевой проницаемости имеет гораздо более сложную форму и должна быть описана иначе. Однако Ходжкин и Хаксли попытались описать и эти графики с помощью уравнений того же вида, который оказался удачным в случае калиевой проницаемости. Для этого они представили изменение натриевой проницаемости как произведение двух функций: одной возрастающей – ее назвали натриевой активацией, другой убывающей – ее назвали натриевой инактивацией. Эти функции удалось описать точно такими же уравнениями, как калиевую проницаемость.

Чтобы понять, как Ходжкин и Хаксли «построили» свою математическую модель процесса возбуждения, разберемся еще чуть подробнее, что же происходит в мембране. Для этого нам придется вернуться к ее электрической схеме, но теперь мы можем внести в нее изменения в соответствии с натриевой теорией возбуждения.

Напомним, что мембрана с электрической точки зрения представляет собой параллельно включенные емкость С и два элемента-источника тока, имеющие противонаправленные э.д.с. и внутренние сопротивления Rk и /? Na – Эти сопротивления являются переменными и определяются калиевой gK и натриевой проводимостями *.)

Рассмотрим вначале калиевый ток. Ионы калия идут через мембрану всегда, причем в обе стороны. Когда потенциал на мембране равен нернстовскому потенциалу, который иначе называют потенциалом равновесия для калия > т0 сохраняется динамическое равновесие, т.е. калиевый ток равен нулю. Если же мембранный потенциал отклоняется от равновесного, то возникает калиевый ток, силу которого можно определить по закону Ома: / = VIR. Заменив HR на калиевую проводимость gK, а. V – на величину отклонения

МП от равновесного, т.е., получаем

Аналогичной формулой определяется и сила натриевого тока:

Здесь Уна – равновесный натриевый потенциал, т.е. неристовский потенциал для натрия, который равен примерно +40 мВ.

Как видно, силы токов зависят от МП довольно сложным образом: V стоит в скобках и, кроме того, входит как аргумент в коэффициенты gк и

Теперь наступает очень важный этап: необходимо замкнуть кольцо обратной связи, учесть, как меняется сам МП в зависимости от изменений проницаемости. И тут выступает на авансцену действующее лицо, пока скромно стоявшее за кулисами, т.е. сбоку нашей схемы, – емкость.

По известной формуле д = УС заряд на конденсаторе равен разности потенциалов на его пластинах, умноженной на его емкость. Продифференцировав это равенство, мы получим

Но это и есть сила тока, поступающего на конденсатор. В нашем случае это сумма натриевого, калиевого токов и тока, подающегося на мембрану извне. Таким образом,

Страница:  1  2  3  4  5 


Другие рефераты на тему «Биология и естествознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы